SRI RAMAKRISHNA INSTITUTE OF TECHNOLOGY
 COIMBATORE - 641010

Discrete Mathematics

Functions

1. Define function.

Solution:

Let X and Y be any two sets. A relation from X to Y is called a function if for every $x \in X$ there is a unique $y \in Y$ such that $(x, y) \in f$.
2. Check whether the following sets define a function or not?. If so, give their domain and range in each other.
$\{(1,(2,3)),(2,(3,4)),(3,(1,4)),(4,(1,4))\}$

Solution:

Let $g(1)=(2,3), g(2)=(3,4), g(3)=(1,4), g(4)=(1,4)$
Clearly each element of domain has an unique image and hence a function.
Range is $\{(2,3),(3,4),(1,4)\}$ which is again function f is defined by $f(2)=3, f(3)=4, f(1)=4$ with domain $\{1,2,3\}$ and range $\{3,4\}$.
3. Determine whether $f: Z \rightarrow Z$ defined by $f(x)=x+1$ are one to one and onto.

Solution:

i)

$$
\begin{gathered}
f(x)=f(y) \\
x+1=y+1 \Rightarrow x=y
\end{gathered}
$$

f is one to one
ii) For every element $x \in Z$ there exists an integer $x+1$ such that

$$
f(x+1)=x+1+1=x+2 \in Z
$$

Every element has a pre-image.
f is onto
from (i) and (ii) f is bijection.
4. Define composition of function.

Let X, Y and Z are sets and that $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are functions. The composite relation $g o f: X \rightarrow Z$ such that $(g o f)(x)=g(f(x))$ for every $x \in X$.

5. Define identity map

A mapping $I_{x}: X \rightarrow X$ is called an identity map if $I_{x}=\{(x, x) / x \in X\}$
6. If $X=\{1,2,3\}$ and $f: X \rightarrow X$ and $g: X \rightarrow X$ is given by $f=\{(1,2),(2,3),(3,1)\}, g=\{(1,2),(2,1),(3,3)\}$ find $f o g$ and $g o f$.

Solution:

$$
\begin{aligned}
\text { fog } & =\{(1,3),(2,2),(3,1)\} \\
\text { gof } & =\{(1,1),(2,3),(3,2)\} \\
& \therefore \text { fog } \neq \text { gof }
\end{aligned}
$$

7. If $f: R \rightarrow R$ and $g: R \rightarrow R$ where R is the set of real numbers. Find $f o g$ and gof if $f(x)=x^{2}-2, g(x)=x+4$.
Solution:

$$
\begin{gathered}
(f \circ g)(x)=f[g(x)]=f(x+4)=(x+4)^{2}-2=x^{2}+16+8 x-2 \\
=x^{2}+8 x+14 \\
(g \circ f)(x)=g[f(x)]=g\left(x^{2}-2\right)=x^{2}-2+4=x^{2}+2
\end{gathered}
$$

8. If $f: Z \rightarrow Z^{+}$defined by $f(x)=x^{2}-2$. Find f^{-1}

Solution:
i)

$$
\begin{gathered}
f(x)=f(y) \Rightarrow x^{2}-2=y^{2}-2 \Rightarrow x^{2}=y^{2} \\
\Rightarrow x=y
\end{gathered}
$$

$\therefore f$ is one to one
ii) Every element has unique pre-image.

$$
\therefore \mathrm{f} \text { is onto }
$$

Let $f(x)=y, y=x^{2}-2$
$x=\sqrt{y+2}$

$$
\therefore f^{-1}(x)=\sqrt{x+2}
$$

9. Show that $f(x)=x^{3}, g(x)=x^{1 / 3}$ for $x \in R$ are inverses of one another. Solution:

$$
\begin{gathered}
(f \circ g)(x)=f(g(x))=f\left(x^{1 / 3}\right)=\left(x^{1 / 3}\right)^{3}=x=I_{x} \\
(g \circ f)(x)=g(f(x))=g\left(x^{3}\right)=\left(x^{3}\right)^{1 / 3}=x=I_{x} \\
\therefore f=g^{-1} \text { or } g=f^{-1}
\end{gathered}
$$

10. If f, g be functions from N to N is the set of natural numbers so that $f(n)=n+1, g(n)=2 n$, Find fog and gof.
Solution:

$$
\begin{gathered}
(f \circ g)(n)=f(g(n))=f(2 n)=2 n+1 \\
(g \circ f)(n)=g(f(n))=g(n+1)=2(n+1)
\end{gathered}
$$

11. Define Commutative property

A binary operation $f: X \times X \rightarrow X$ is said to be commutative if for every $x, y \in X, f(x, y)=f(y, x)$.
12. Show that $x * y=x^{y}$ is a binary operation on the set of positive integers. Determine whether $*$ is commutative.

Solution:

Let $x, y \in Z^{+}$
$x * y=x^{y} \in Z^{+}$
$\therefore *$ is a binary operation on the set of positive integers.

$$
\begin{gathered}
y * x=y^{x} \Rightarrow x^{y} \neq y^{x} \\
\therefore x * y \neq y * x .
\end{gathered}
$$

* is not commutative.

13. Find the identity element of the group of integers with the binary operation * defined by $a * b=a+b-2, a, b \in Z$

Solution:

The binary operation * defined by
$a * b=a+b-2$
Let $e \in Z$ be the identity element then
$a * e=e * a=a$
$a+e-2=a$
$\therefore e=2 \epsilon Z$ is the identity element.
14. What are the identity and inverse elements under $*$ defined by

$$
a * b=\frac{a b}{2}, a, b \in R
$$

Solution:

The binary operation $*$ defined as

$$
a * b=\frac{a b}{2}
$$

Let $e \in R$ be the identity element then
$a * e=e * a=a$
$\frac{a e}{2}=a \Rightarrow e=2$.
$\therefore e=2$ is the identity element.
Let $b \in R$ be the inverse element of $a \in R$ then
$a * b=b * a=e$

$$
\begin{aligned}
& \frac{a b}{2}=2 \Rightarrow b=\frac{4}{a} \\
& \therefore b=\frac{4}{a} \text { is the inverse of } a .
\end{aligned}
$$

15. Define Characteristic function.

Let U be a universal set and A be a subset of U.
The function $\chi_{A}: U \rightarrow\{0,1\}$ defined by

$$
\chi_{A}(x)=\left\{\begin{array}{ll}
1, \text { if } x & \in A \\
0, \text { if } x & \notin A
\end{array}\right. \text { is called characteristic function. }
$$

16. Show that $\overline{\bar{A}}=\boldsymbol{A}$ by using characteristic function.

Solution:

$$
\chi_{\overline{\bar{A}}}(x)=1-\chi_{\bar{A}}(x)=1-\left(1-\chi_{A}(x)\right)=\chi_{A}(x)
$$

17. What is the use of Hashing function.

Hashing functions is used to generate key to a address in memory location for the files to store in random order so that files can be quickly located. The Hashing function used here is $h(k)=k(\bmod m)$ where m is the number of available memory locations.

18. Define Primitive Recursion function

A function is called primitive recursive iff it can be obtained from the initial functions by a finite number of operations of composition and recursion.
19. Show that the function $f(x, y)=x+y$ is a primitive recursive.

Solution:
$f(x, 0)=x=U_{1}^{1}(x)$.(Using projection function)
$f(x, y+1)=x+y+1=S(x+y)$ (Using successer function)
$=S(f(x, y))=S\left(U_{3}^{3}(x, y, f(x, y))\right)$ (Using projection function)
hence $f(x, y)=x+y$ is recursive and as it is obtained by initial functions by a finite number of operations of composition and recursion.
$\therefore f(x, y)=x+y$ is a primitive recursive function.
20. Define Permutation and transposition.

A bijection from a set A to itself is called a permutation of A. A cycle of length 2 is called a transposition.
21. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are mappings and $g o f: A \rightarrow C$ is one-to-one, prove that f is one-to-one.
Solution:
$\forall x \in A,(g \circ f)(x)=(g \circ f)(y) \Rightarrow x=y$ since gof is one to one.
Consider $f(x)=f(y) \Rightarrow(g \circ f)(x)=(g \circ f)(y)$

$$
\begin{gathered}
\Rightarrow \quad x=y \\
\therefore f(x)=f(y) \Rightarrow x=y
\end{gathered}
$$

Hence f is one to one.
22. If A has $\mathbf{3}$ elements and B has $\mathbf{2}$ elements, how many functions are there from A to B?
Solution:
If $f: A \rightarrow B$ and A has m elements and B has n elements then there are n^{m} functions.
\therefore There are $2^{3}=8$ functions.
23. Show that the function $f(x, y)=x y$ is a primitive recursive.

Solution:
$f(x, 0)=0=Z(x)=Z\left(U_{1}^{1}(x)\right)$.(Using Zero and projection function)
$f(x, y+1)=x(y+1)=x y+x=f(x, y)+x$
$=U_{3}^{3}(x, y, f(x, y))+U_{3}^{1}(x, y, f(x, y))$ (Using projection function)
$=f_{1}\left(U_{3}^{3}(x, y, f(x, y)), U_{3}^{1}(x, y, f(x, y))\right)$ (Using $\left.f_{1}(x, y)=x+y\right)$
$f(x, y)=x y$ is recursive since $f_{1}(x, y)=x+y$ is primitive recursive and as it is obtained by initial functions by a finite number of operations of composition and recursion.
$\therefore f(x, y)=x y$ is a primitive recursive function.
24. Show that the function $f(x, y)=x-y$ is a partial recursive.

Solution:
Clearly , $y \in N$, the function is well defined only for $x>y$. Therefore, $f(x, y)=x-y$ for only $x>y$ is partial recursive.
25. Let $\left.h(x, y)=g\left(f_{1}(x, y)\right), f_{2}(x, y)\right)$ for all positive integers x and y where $f_{1}(x, y)=x^{2}+y^{2}, f_{2}(x, y)=x$ and $(x, y)=x y^{2}$. Find $h(x, y)$ interms of x any y.
Solution: $\left.h(x, y)=g\left(f_{1}(x, y)\right), f_{2}(x, y)\right)$
$h(x, y)=g\left(x^{2}+y^{2}, x\right)=\left(x^{2}+y^{2}\right) x^{2}$
26. Prove by an example, composition of function is not commutative.

Solution:

Let $f: R \rightarrow R$ and $g: R \rightarrow R$ and let $f(x)=x^{2}$ and $g(x)=2 x$
Then $(f o g)(x)=f(g(x))=f(2 x)=(2 x)^{2}=4 x^{2}$
$(g \circ f)(x)=g(f(x))=g\left(x^{2}\right)=2 x^{2}$
Hence $f o g \neq g o f$
\therefore Composition of function is not commutative.
27. Define Cyclic permutation

Let $b_{1}, b_{2}, \ldots, b_{r}$ be r distinct elements of the set A. The permutation $P: A \rightarrow A$ defined by $P\left(b_{1}\right)=b_{2}, P\left(b_{2}\right)=b_{3}, \ldots, P\left(b_{r-1}\right)=b_{r}, P\left(b_{r}\right)=b_{1}$ is called a cyclic permutation of length r, or simply cycle of length r and it will denoted by $\left(b_{1}, b_{2}, \ldots, b_{r}\right)$.
28. Show that the permutation $\binom{123456}{562413}$ is odd.

Solution:

$\binom{123456}{562413}=(15)(263)=(15)(26)(23)$
The given permutation can be expressed as the product of an odd number of transpositions and hence the permutation is odd.
29. If $A=(12345), B=(23)(45)$. Find $A o B$

Solution:

$$
A o B=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 & 1
\end{array}\right) o\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 3 & 2 & 5 & 4
\end{array}\right)=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 4 & 3 & 1 & 5
\end{array}\right)=\left(\begin{array}{llll}
1 & 2 & 4
\end{array}\right)
$$

30. Show that the permutation $\binom{123456}{312564}$ is even.

Solution:

$\left(\begin{array}{ll}12 & 3 \\ 3 & 1\end{array} 25664\right)=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\left(\begin{array}{lll}4 & 5 & 6\end{array}\right)=\left(\begin{array}{lll}1 & 3\end{array}\right)\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}4 & 5\end{array}\right)\left(\begin{array}{ll}4 & 6\end{array}\right)$
The given permutation can be expressed as the product of even number of transpositions and hence the permutation is even.

PART B

31. i) Find all mappings from $A=\{1,2,3\}$ to $B=\{4,5\}$. Find which of them are one-to one and which are onto.

Solution:

All possible mappings from A to B are given below
a) $\{(1,4),(2,4),(3,4)\}$
b) $\{(1,5),(2,5),(3,5)\}$
c) $\{(1,4),(2,4),(3,5)\}$
d) $\{(1,4),(2,5),(3,4)\}$
e) $\{(1,5),(2,4),(3,4)\}$
f) $\{(1,4),(2,5),(3,5)\}$
g) $\{(1,5),(2,4),(3,5)\}$
i) $\{(1,5),(2,5),(3,4)\}$

Here all the mappings are not one to one functions because at least one element of A is mapped to more than one element of B.
Here all the mappings are not onto functions because every element of B has pre image in A but it is not unique.
ii) If $f=\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4\end{array}\right)$ and $g=\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1\end{array}\right)$ are permutations, prove that

$$
(g o f)^{-1}=f^{-1} o g^{-1}
$$

Solution:

$$
\begin{aligned}
& f^{-1}(1)=3, f^{-1}(2)=2, f^{-1}(3)=1, f^{-1}(4)=4, g^{-1}(1)=4, g^{-1}(2)=1, \\
& g^{-1}(3)=2, g^{-1}(4)=3 \\
& f^{-1}=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
3 & 2 & 1 & 4
\end{array}\right), g^{-1}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 1 & 2 & 3
\end{array}\right) \\
& (g \circ f)(1)=g(f(1))=g(3)=4,(g \circ f)(2)=g(f(2))=g(2)=3, \\
& (g \circ f)(3)=g(f(3))=g(1)=2,(g \circ f)(4)=g(f(4))=g(4)=1 \\
& g \circ f=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1
\end{array}\right) \\
& (g \circ f)^{-1}(1)=4,(g \circ f)^{-1}(2)=3,(g \circ f)^{-1}(3)=2,(g o f)^{-1}(4)=1 \\
& (g \circ f)^{-1}=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1
\end{array}\right) \ldots(1) \\
& \left(f^{-1} \circ g^{-1}\right)(1)=f^{-1}\left(g^{-1}(1)\right)=f^{-1}(4)=4, \\
& \left(f^{-1} \circ g^{-1}\right)(2)=f^{-1}\left(g^{-1}(2)\right)=f^{-1}(1)=3 \\
& \left(f^{-1} \circ g^{-1}\right)(3)=f^{-1}\left(g^{-1}(3)\right)=f^{-1}(2)=2, \\
& \left(f^{-1} \circ g^{-1}\right)(4)=f^{-1}\left(g^{-1}(4)\right)=f^{-1}(3)=1
\end{aligned}
$$

$f^{-1} o g^{-1}=\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{array}\right) .$.
From (1) and (2), we get
$(g \circ f)^{-1}=f^{-1} \circ g^{-1}$
iii) If R denotes the set of real numbers and $f: R \rightarrow R$ is given by $f(x)=x^{3}-2$, find f^{-1}

Solution:

To prove f is one to one:

$$
\forall x, y \in R \text { let } f(x)=f(y) \Rightarrow x^{3}-2=y^{3}-2 \Rightarrow x^{3}=y^{3} \Rightarrow x=y
$$

$\therefore f$ is one to one
To prove f is onto:

$$
\begin{gathered}
y=x^{3}-2 \Rightarrow x^{3}=y+2 \Rightarrow x=(y+2)^{1 / 3} \in R \\
\forall x \in R, x=f\left((x+2)^{1 / 3}\right)
\end{gathered}
$$

$\therefore \forall x \in R$, there is a pre image $(x+2)^{1 / 3} \in R$
Every element has unique pre-image
$\therefore f$ is onto
$\therefore f$ is bijection $\Rightarrow f^{-1}$ exists.
Let $y=f(x) \Rightarrow x=f^{-1}(y)$

$$
\begin{gathered}
y=x^{3}-2 \Rightarrow x^{3}=y+2 \Rightarrow x=f^{-1}(y)=(y+2)^{1 / 3} \\
f^{-1}(x)=(x+2)^{1 / 3}
\end{gathered}
$$

32. i)If Z^{+}denote the set of positive integers and Z denote the set of integers. Let $f: Z^{+} \rightarrow Z$ be defined by
$f(n)=\left\{\begin{array}{c}\frac{n}{2}, \text { if } n \text { is even } \\ \frac{1-n}{2}, \text { if } n \text { is odd }\end{array}\right.$. Prove that f is a bijection and find f^{-1}.

Solution:

To prove f is one to one:

$$
\forall x, y \in Z^{+}
$$

Case: 1 when x and y are even

$$
\begin{equation*}
f(x)=f(y) \Rightarrow \frac{x}{2}=\frac{y}{2} \Rightarrow x=y \tag{1}
\end{equation*}
$$

Case: 2 when x and y are odd
$f(x)=f(y) \Rightarrow \frac{1-x}{2}=\frac{1-y}{2} \Rightarrow 1-x=1-y \Rightarrow x=y$
From (1) and (2), we get
$\therefore f$ is one to one
To prove f is onto:
When x is even
Let $y=\frac{x}{2} \Rightarrow x=2 y$

$$
\forall x \in Z, x=f(2 x)
$$

When x is odd

$$
\text { Let } \begin{aligned}
y=\frac{1-x}{2} \Rightarrow 1-x=2 y \Rightarrow & x=1-2 y \\
& \forall x \in Z, x=f(1-2 x)
\end{aligned}
$$

$\therefore \forall x \in Z$, there is a pre image $1-2 x \in Z^{+}$
Every element has unique pre-image
$\therefore f$ is onto
$\therefore f$ is bijection $\Rightarrow f^{-1}$ exists.
When x is even
Let $y=\frac{x}{2} \Rightarrow x=f^{-1}(y)=2 y$
When x is odd
Let $y=\frac{1-x}{2} \Rightarrow 1-x=2 y \Rightarrow x=f^{-1}(y)=1-2 y$

$$
f^{-1}(n)=\left\{\begin{array}{c}
2 n, \text { if } n \text { is even } \\
1-2 n, \text { if } n \text { is odd }
\end{array}\right.
$$

ii)If A, B and C be any three nonempty sets. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be mappings. If f and g are onto, prove that $g o f: A \rightarrow C$ is onto. Also give an example to show that gof may be onto but both f and g need not be onto.

Solution:

Since $f: A \rightarrow B$ is onto
$f(x)=y, \forall x \in A$ and $y \in B$.
Since $g: B \rightarrow C$ is onto
$g(y)=z, \forall z \in C$ and $y \in B \ldots$ (2)
$\forall x \in A, \operatorname{gof}(x)=g(f(x))=g(y)=z[$ from (1) and (2)]
$\therefore \forall z \in C$ there exists a preimage $x \in A$ such that $\operatorname{gof}(x)=z$
\therefore gof : $A \rightarrow C$ is onto
For example
Let $A=\{1,2\}, B=\{a, b, c\}$ and $C=\{d, e\}$

$$
f=\{(1, a),(2, b)\}, g=\{(a, d),(b, e),(c, e)\}
$$

$$
g \circ f(1)=g(f(1))=g(a)=d
$$

$$
g o f(2)=g(f(2))=g(b)=e
$$

$$
g o f=\{(1, d),(2, e)\}
$$

The function f is not onto because $c \in B$ does not have pre image.
The function g is not onto because every element of C have pre image but it is not unique. $e \in C$ have two pre images $b, c \in B$
The function gof is onto because every element of C have pre image and it is unique.
33. i)If the function f and g be defined $f(x)=2 x+1$ and $g(x)=x^{2}-2$. Determine the composition function $f o g$ and $g o f$.

Solution:

$f o g(x)=f(g(x))=f\left(x^{2}-2\right)=2\left(x^{2}-2\right)+1=2 x^{2}-3$
$g \circ f(x)=g(f(x))=g(2 x+1)=(2 x+1)^{2}-2=4 x^{2}+4 x+1-2$
$g o f(x)=4 x^{2}+4 x-1$
ii) Let \boldsymbol{a} and \boldsymbol{b} be any positive integers and suppose \boldsymbol{Q} is defined recursively as follows:
$Q(a, b)=\left\{\begin{array}{l}0, \quad \text { if } a<b \\ Q(a-b, b)+1, \text { if } b \leq a\end{array}\right.$. Find $Q(2,5), Q(12,5), Q(5861,7)$.

Solution:

$Q(2,5)=0$ since $2<5$
$Q(12,5)=Q(12-5,5)+1=Q(7,5)+1$

$$
=(Q(7-5,5)+1)+1=Q(2,5)+2=0+2=2
$$

$Q(5861,7)=Q(5861-7,7)+1=Q(5854,7)+1$
$=Q(5847,7)+2=Q(5840,7)+3=Q(5833,7)+4=Q(5826,7)+5$
$=Q(5819,7)+6=Q(5812,7)+7=Q(5805,7)+8 \ldots$
$=Q(2,7)+837=837$
This function is the quotient of a divided by b
$\therefore \frac{5861}{7}=837.28$
$\therefore Q(5861,7)=837$
34. i) If $f: R \rightarrow R$ be defined by $f(x)=2 x-3$. Find a formula for f^{-1}.

Solution:

To prove f is one to one:
$\forall x, y \in R$ let $f(x)=f(y) \Rightarrow 2 x-3=2 y-3 \Rightarrow 2 x=2 y \Rightarrow x=y$
$\therefore f$ is one to one
To prove f is onto:

$$
\begin{gathered}
y=2 x-3 \Rightarrow 2 x=y+3 \Rightarrow x=\frac{y+3}{2} \in R \\
\forall x \in R, x=f\left(\frac{x+3}{2}\right)
\end{gathered}
$$

$\therefore \forall x \in R$, there is a pre image $\frac{x+3}{2} \in R$
Every element has unique pre-image
$\therefore f$ is onto
$\therefore f$ is bijection $\Rightarrow f^{-1}$ exists.
Let $y=f(x)=2 x-3 \Rightarrow 2 x=y+3 \Rightarrow x=f^{-1}(y)=\frac{y+3}{2}$

$$
f^{-1}(x)=\frac{x+3}{2}
$$

ii) Show that $A \cap(B U C)=(A \cap B) \boldsymbol{U}(A \cap C)$ by using Characteristic functions.

Solution:

$$
\begin{align*}
\chi_{A \cap(B U C)}(x)=1 & \Leftrightarrow x \in A \cap(B U C) \\
& \Leftrightarrow x \in A \text { and } x \in(B U C) \\
& \Leftrightarrow x \in A \text { and }(x \in B \text { or } x \in C) \\
& \Leftrightarrow(x \in A \text { and } x \in B) \text { or }(x \in A \text { and } x \in C) \\
& \Leftrightarrow x \in A \cap B \text { or } x \in A \cap C \\
& \Leftrightarrow x \in(A \cap B) U(A \cap C) \\
& \Leftrightarrow \chi_{(A \cap B) U(A \cap C)}(x)=1 \ldots(1) \tag{1}\\
\chi_{A \cap(B U C)}(x)=0 & \Leftrightarrow x \notin A \cap(B U C) \\
& \Leftrightarrow x \notin A \text { and } x \notin(B U C) \\
& \Leftrightarrow x \notin A \text { or }(x \notin B \text { and } x \notin C) \\
& \Leftrightarrow(x \notin A \text { or } x \notin B) \text { and }(x \notin A \text { or } x \notin C) \\
& \Leftrightarrow x \notin A \cap B \text { and } x \notin A \cap C \\
& \Leftrightarrow x \notin(A \cap B) U(A \cap C) \\
& \Leftrightarrow \chi_{(A \cap B) U(A \cap C)}(x)=0 \ldots(2) \tag{2}
\end{align*}
$$

From (1) and (2) we get
$\chi_{A \cap(B U C)}(x)=\chi_{(A \cap B) U(A \cap C)}(x)$
$\therefore A \cap(B U C)=(A \cap B) U(A \cap C)$.

Aliter:

$$
\begin{aligned}
\chi_{A \cap(B U C)}(x) & =\chi_{A}(x) \chi_{B U C}(x) \\
& =\chi_{A}(x)\left(\chi_{B}(x)+\chi_{C}(x)-\chi_{B \cap C}(x)\right) \\
& =\chi_{A}(x)\left(\chi_{B}(x)+\chi_{C}(x)-\chi_{B}(x) \chi_{C}(x)\right) \\
& =\chi_{A}(x) \chi_{B}(x)+\chi_{A}(x) \chi_{C}(x)-\chi_{A}(x) \chi_{B}(x) \chi_{C}(x) \\
& =\chi_{A \cap B}(x)+\chi_{A \cap C}(x)-\chi_{A \cap B \cap C}(x) \\
& =\chi_{A \cap B}(x)+\chi_{A \cap C}(x)-\chi_{(A \cap B) \cap(A \cap C)}(x) \\
& =\chi_{(A \cap B) U(A \cap C)}(x)
\end{aligned}
$$

35. i)Show that $f: R-\{3\} \rightarrow R-\{1\}$ given by $f(x)=\frac{x-2}{x-3}$ is a bijection.

Solution:

To prove f is one to one:

$$
\begin{aligned}
& \forall x, y \in R-\{3\}, \text { let } f(x)=f(y) \Rightarrow \frac{x-2}{x-3}=\frac{y-2}{y-3} \\
& \Rightarrow(x-2)(y-3)=(y-2)(x-3) \\
& \Rightarrow x y-3 x-2 y+6=x y-2 x-3 y+6 \Rightarrow 3 y-2 y=3 x-2 x \Rightarrow x=y
\end{aligned}
$$

$\therefore f$ is one to one
To prove f is onto:

$$
\begin{aligned}
y=\frac{x-2}{x-3} \Rightarrow & y(x-3)=x-2 \Rightarrow y x-3 y=x-2 \Rightarrow y x-x=3 y-2 \\
& \Rightarrow x(y-1)=3 y-2 \Rightarrow x=\frac{3 y-2}{y-1} \in R-\{1\}
\end{aligned}
$$

$$
\begin{gathered}
\forall x \in R-\{1\}, x=f\left(\frac{3 x-2}{x-1}\right) \\
\therefore \forall x \in R-\{1\}, \text { there is a pre image } \frac{3 x-2}{x-1} \in R-\{3\}
\end{gathered}
$$

Every element has unique pre-image
$\therefore f$ is onto
$\therefore f$ is bijection $\Rightarrow f^{-1}$ exists.

$$
\begin{aligned}
& \text { Let } y=f(x)=\frac{x-2}{x-3} \Rightarrow y(x-3)=x-2 \Rightarrow y x-3 y=x-2 \\
& \Rightarrow y x-x=3 y-2 \\
& \qquad \begin{aligned}
\Rightarrow x(y-1)=3 y-2 \Rightarrow x & =f^{-1}(y)=\frac{3 y-2}{y-1} \in R-\{1\}
\end{aligned} \\
& f^{-1}(x)=\frac{3 x-2}{x-1}
\end{aligned}
$$

ii) Let $f(x)=x+2, g(x)=x-2$ and $h(x)=3 x$ for $x \in R$. Find $g o f$ and $f o(g o h)$.

Solution:

$$
\begin{aligned}
& (g \circ f)(x)=g(f(x))=g(x+2)=x+2-2=x \\
& (f o(g o h))(x)=f((g o h)(x))=f(g(h(x)))=f(g(3 x))=f(3 x-2) \\
& (f o(g \circ h))(x)=3 x-2+2=3 x
\end{aligned}
$$

iii)Let $D(x)$ denote the number of divisors of x. Show that $D(x)$ is a primitive function.

Proof:

Let $r(m, n)$ denote the remainder got when n is divided by m.
If m is a divisor of n, then

$$
\begin{gathered}
r(m, n)=0 \\
\operatorname{sg}\{r(m, n)\}=1
\end{gathered}
$$

Hence, the number of divisors of n, say $f(n)$ is given by

$$
\begin{equation*}
f(n)=\sum_{m=1}^{n} \overline{\operatorname{sg}}\{r(m, n)\} \ldots \tag{1}
\end{equation*}
$$

$\overline{s g}\{r(m, n)\}$ is the composition of two primitive recursive functions and hence, primitive recursive.
Since $f(n)$ is the sum of finite number of primitive recursive functions, it is also a primitive recursive.
[For example, the divisors of 6 are 1,2,3 and 6
The number of divisors of 6 are 4

$$
\begin{aligned}
& \text { Also } \overline{\operatorname{sg}}\{r(1,6)\}+\overline{s g}\{r(2,6)\}+\overline{s g}\{r(3,6)\}+\overline{s g}\{r(4,6)\} \\
& +\overline{s g}\{r(5,6)\}+\overline{s g}\{r(6,6)\}=1+1+1+0+0+1=4]
\end{aligned}
$$

36. i) Prove that $\operatorname{Pr}(x)$, the odd and even parity function is primitive recursive.

Solution:

By definition $\operatorname{Pr}(x)= \begin{cases}0, & \text { if } x=0 \text { or even } \\ 1, & \text { if } x \text { is } \text { odd }\end{cases}$

$$
\operatorname{Pr}(0)=0=Z(x)
$$

$$
\operatorname{Pr}(x+1)=\left\{\begin{array}{lr}
1, & \text { if } x=0 \text { or even } \\
0, & \text { if } x \text { is odd }
\end{array}\right.
$$

$$
=\overline{\operatorname{sg}}\{\operatorname{Pr}(x)\}=\overline{\operatorname{sg}}\left\{U_{2}^{2}\{x, \operatorname{Pr}(x)\}\right\}
$$

Thus, $\operatorname{Pr}(x)$ is defined recursively from the initial functions $Z(x), \overline{s g}(x)$, and U_{2}^{2} using composition.
$\therefore \operatorname{Pr}(x)$ is primitive recursive.

ii)Define even and odd permutations. Show that the permutations

$f=\left(\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 5 & 7 & 8 & 6 & 1 & 4\end{array}\right)$ and $\boldsymbol{g}=\left(\begin{array}{lllll}1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2\end{array}\right)$ are respectively even and odd.

Solution:

A Permutation function is called even if the number of its transposition is even.
A Permutation function is called odd if the number of its transposition is odd.

$$
\begin{gathered}
f=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
2 & 5 & 7 & 8 & 6 & 1 & 4 & 3
\end{array}\right)=\left(\begin{array}{llll}
1 & 2 & 5 & 6
\end{array}\right)\left(\begin{array}{llll}
3 & 7 & 4 & 8
\end{array}\right) \\
=\left(\begin{array}{llll}
1 & 2
\end{array}\right)\left(\begin{array}{llll}
1 & 5
\end{array}\right)\left(\begin{array}{lll}
1 & 6
\end{array}\right)\left(\begin{array}{lll}
3 & 7
\end{array}\right)\left(\begin{array}{lll}
3 & 4
\end{array}\right)\left(\begin{array}{lll}
3 & 8
\end{array}\right)
\end{gathered}
$$

There are 6 transposition in f.
$\therefore f$ is even permutation

$$
g=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \tag{array}\\
4 & 3 & 1 & 2
\end{array}\right)=\left(\begin{array}{llll}
1 & 4 & 2 & 3
\end{array}\right)=\left(\begin{array}{lll}
1 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 2
\end{array}\right)(
$$

There are 3 transposition in f.
$\therefore f$ is odd permutation

37. i) If f and g are bijection on a set A, prove that $\boldsymbol{f o g}$ is also bijection.

Solution:

Let A, B and C be any three nonempty sets. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be then gof : $A \rightarrow C$.
To prove gof : $A \rightarrow C$ is one to one:
$\forall x, y \in A, g \circ f(x)=\operatorname{gof}(y)$
$\Rightarrow g(f(x))=g(f(y))$
$\Rightarrow f(x)=f(y)$ [Since g is one to one]
$\Rightarrow x=y[$ Since f is one to one]
$\forall x, y \in A, \operatorname{gof}(x)=\operatorname{gof}(y) \Rightarrow x=y$
\therefore gof : $A \rightarrow C$ is one to one
To prove gof : $A \rightarrow C$ is onto:
Since $f: A \rightarrow B$ is onto
$f(x)=y, \forall x \in A$ and $y \in B$.
Since $g: B \rightarrow C$ is onto
$g(y)=z, \forall z \in C$ and $y \in B$
$\forall x \in A, \operatorname{gof}(x)=g(f(x))=g(y)=z[$ from (1) and (2)]
$\therefore \forall z \in C$ there exists a preimage $x \in A$ such that $\operatorname{gof}(x)=z$
\therefore gof : $A \rightarrow C$ is onto
\therefore gof $: A \rightarrow C$ is bijection.
ii) If $f=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 5 & 1 & 3\end{array}\right)$ and $h=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 4 & 3 & 1\end{array}\right)$ permutations on the set $A=\{1,2,3,4,5\}$. Find the permutation g on A such that $f o g=h o f$.
Solution:
Given that $f o g=h o f \Rightarrow g=f^{-1} o(h o f)$
$f^{-1}(1)=4, f^{-1}(2)=1, f^{-1}(3)=5, f^{-1}(4)=2, f^{-1}(5)=3$
$f^{-1}=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 5 & 2 & 3\end{array}\right)$
$(h \circ f)(1)=h(f(1))=h(2)=2,(h \circ f)(2)=h(f(2))=h(4)=3$,
$(h \circ f)(3)=h(f(3))=h(5)=1,(h \circ f)(4)=h(f(4))=h(1)=5$,
$(h o f)(5)=h(f(5))=h(3)=4$
hof $=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4\end{array}\right)$
$\left(f^{-1} o(h \circ f)\right)(1)=f^{-1}((h \circ f)(1))=f^{-1}(2)=1$
$\left(f^{-1} o(h \circ f)\right)(2)=f^{-1}((h \circ f)(2))=f^{-1}(3)=5$
$\left(f^{-1} o(h \circ f)\right)(3)=f^{-1}((h \circ f)(3))=f^{-1}(1)=4$
$\left(f^{-1} o(h \circ f)\right)(4)=f^{-1}((h \circ f)(4))=f^{-1}(5)=3$
$\left(f^{-1} o(h \circ f)\right)(5)=f^{-1}((h \circ f)(5))=f^{-1}(4)=2$
$\therefore g=f^{-1} o(h o f)=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 4 & 3 & 2\end{array}\right)$
iii)The Ackerman function $A(x, y)$ is defined by $A(0, y)=y+1$;
$A(x+1,0)=A(x, 1) ; A(x+1, y+1)=A(x, A(x+1, y))$. Find $A(2,1)$.

Solution:

$$
\begin{align*}
& A(0, y)=y+1 \ldots(1) \\
& A(x+1,0)=A(x, 1) \ldots(2) \\
& A(x+1, y+1)=A(x, A(x+1, y)) \ldots(3) \tag{3}\\
& A(2,1)=A(1, A(2,0)) \ldots(4)[\text { from }(3)] \\
& A(2,0)=A(1,1) \ldots(5)[\text { from }(2)] \\
& A(1,1)=A(0, A(1,0)) \ldots(6)[\text { from }(3)] \\
& A(1,0)=A(0,1)=1+1=2 \ldots(7)[\text { from }(2) \&(1)] \\
& A(1,1)=A(0, A(1,0))=A(0,2)=2+1=3 \ldots(8)[\text { from }(3),(6) \&(7)] \\
& A(2,0)=A(1,1)=3 \ldots(9)[\text { from }(5) \&(8)] \\
& A(2,1)=A(1, A(2,0))=A(1,3) \ldots(10)[\text { from }(4) \&(9)] \\
& A(1,3)=A(0, A(1,2)) \ldots(11)[\text { from }(3)] \\
& A(1,2)=A(0, A(1,1))=A(0,3)=3+1=4 \ldots(12)[\text { from }(3) \&(1)] \\
& A(1,3)=A(0, A(1,2))=A(0,4)=4+1=5 \ldots(13)[\text { from }(11) \&(12)] \\
& A(2,1)=5[\text { from }(10) \&(13)]
\end{align*}
$$

38. i) Let $a<b$. If $f:[a, b] \rightarrow[0,1]$ is defined by $f(x)=\frac{x-a}{b-a}$, Prove that f is a bijection and find its inverse.

Solution:

To prove f is one to one:

$$
\begin{aligned}
\forall x, y \in[a, b], \text { let } f(x)=f(y) & \Rightarrow \frac{x-a}{b-a}=\frac{y-a}{b-a} \\
& \Rightarrow x-a=y-a \Rightarrow x=y
\end{aligned}
$$

$\therefore f$ is one to one
To prove f is onto:

$$
\begin{aligned}
& y=\frac{x-a}{b-a} \Rightarrow y(b-a)=x-a \Rightarrow x=y(b-a)+a \in[\boldsymbol{a}, \boldsymbol{b}] \\
& \forall x \in[\mathbf{0}, \mathbf{1}], x=f(x(b-a)+a) \\
& \therefore \forall x \in[\mathbf{0}, \mathbf{1}] \text {, there is a pre image } x(b-a)+a \in[\boldsymbol{a}, \boldsymbol{b}]
\end{aligned}
$$

Every element has unique pre-image
$\therefore f$ is onto
$\therefore f$ is bijection $\Rightarrow f^{-1}$ exists.
Let $y=f(x)==\frac{x-a}{b-a} \Rightarrow y(b-a)=x-a$

$$
\begin{gathered}
\Rightarrow x=f^{-1}(y)=y(b-a)+a \in[\boldsymbol{a}, \boldsymbol{b}] \\
f^{-1}(x)=x(b-a)+a
\end{gathered}
$$

ii) If $f: A \rightarrow B$ and $g: B \rightarrow C$ are mappings such that $g o f: A \rightarrow C$ is bijection prove that \boldsymbol{g} is onto and \boldsymbol{f} is one to one.

Solution:

To prove f is one to one:

$$
\forall x, y \in A, \text { Let us assume that } f(x)=f(y)
$$

$$
\Rightarrow g(f(x))=g(f(y))
$$

$$
\Rightarrow \operatorname{gof}(x)=\operatorname{gof}(y) \Rightarrow x=y[\text { Since gof is one to one }]
$$

$$
\therefore f(x)=f(y) \Rightarrow x=y
$$

$\therefore f$ is one to one
To prove g is onto:
$\forall z \in C, \operatorname{gof}(x)=z$ Since gof is onto $\forall x \in A$
$\Rightarrow g(f(x))=z \Rightarrow g(y)=z$, where $y=f(x) \in B$
$\therefore \forall z \in C$ there exists $y \in B$ such that $g(y)=z$
$\therefore g$ is onto
39. i)Prove that composition of functions is associative.

Proof: Let $f: A \rightarrow B, g: B \rightarrow C$ and $h: C \rightarrow D$ are the functions then
gof: $A \rightarrow C, h o(g o f): A \rightarrow D \ldots$ (1)
hog: $B \rightarrow D,(h o g) o f: A \rightarrow D$... (2)
$\forall x \in A$,
$h o(g \circ f)(x)=h((g \circ f)(x))=h(g(f(x)))=\operatorname{hog}(f(x))$

$$
\begin{equation*}
=((h o g) o f)(x) \tag{3}
\end{equation*}
$$

From (1), (2) and (3), we get
Composition of functions is associative
ii)Prove that $(g \text { of })^{-1}=f^{-1} o g^{-1}$ where $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two invertible functions.

Proof:

If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are invertible then f and g are bijection then g o $f: X \rightarrow Z$ is also bijection. \therefore gof is invertible.

$$
\begin{align*}
& \therefore(g \circ f)^{-1}: Z \rightarrow X \ldots(1) \\
& f^{-1}: Y \rightarrow X, g^{-1}: Z \rightarrow Y \Rightarrow \tag{2}\\
& \begin{aligned}
\left((g \circ f) \circ\left(f^{-1} \circ g^{-1}\right)\right)(x) & =\left(g \circ g^{-1}: Z \rightarrow X \ldots(2)\right. \\
& \left.=\left(g \circ f^{-1}\right) \circ g^{-1}\right)(x)=(x)=I_{z}(x) \ldots(3) \\
\left(\left(f^{-1} \circ g_{y} \circ g^{-1}\right) \circ(g \circ f)\right)(x) & =\left(f^{-1} \circ\left(g^{-1} \circ g\right) \circ f\right)(x)=\left(f^{-1} \circ I_{y} \circ f\right)(x) \\
& =\left(f^{-1} \circ f\right)(x)=I_{x}(x) \ldots(4)
\end{aligned}
\end{align*}
$$

From (1), (2), (3) and (4), we get
$(g \circ f)^{-1}=f^{-1} \circ g^{-1}$
Aliter:
If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are invertible then f and g are bijection then g o $f: X \rightarrow Z$ is also bijection. \therefore gof is invertible.
$\therefore(g \circ f)^{-1}: Z \rightarrow X \ldots(1)$
$f^{-1}: Y \rightarrow X, g^{-1}: Z \rightarrow Y \Rightarrow f^{-1} \circ g^{-1}: Z \rightarrow X \ldots$
Now for any $x \in X$, let $f(x)=y$ and $g(y)=z$

$$
\begin{gathered}
g \circ f(x)=g(f(x))=g(y)=z \\
(g \circ f)^{-1}(z)=x \ldots(3) \\
f(x)=y \Rightarrow f^{-1}(y)=x \\
g(y)=z \Rightarrow g^{-1}(z)=y
\end{gathered}
$$

$$
\begin{equation*}
f^{-1} \circ g^{-1}(z)=f^{-1}\left(g^{-1}(z)\right)=f^{-1}(y)=x \ldots \tag{4}
\end{equation*}
$$

From (1), (2), (3) and (4), we get
$(g \circ f)^{-1}=f^{-1} \circ g^{-1}$
40. i)Using Characteristic function, Prove that $|\boldsymbol{A} \cup \boldsymbol{B}|=|\boldsymbol{A}|+|B|-|\boldsymbol{A} \cap B|$.

Proof:

$$
\begin{aligned}
\chi_{A \cup B}(x)=1 & \Leftrightarrow x \in A \cup B \\
& \Leftrightarrow x \in A \text { or } x \in B \\
& \Leftrightarrow \chi_{A}(x)=1 \text { or } \chi_{B}(x)=1 \\
& \Leftrightarrow \chi_{A}(x)+\chi_{B}(x)-\chi_{A}(x) \cdot \chi_{B}(x)=1 \\
& \Leftrightarrow \chi_{A}(x)+\chi_{B}(x)-\chi_{A \cap B}(x)=1 \ldots(1) \\
\chi_{A \cup B}(x)=0 & \Leftrightarrow x \notin A \cup B \\
& \Leftrightarrow x \notin A \text { and } x \notin B
\end{aligned}
$$

$$
\begin{align*}
& \Leftrightarrow \chi_{A}(x)=0 \text { and } \chi_{B}(x)=0 \\
& \Leftrightarrow \chi_{A}(x)+\chi_{B}(x)-\chi_{A}(x) \cdot \chi_{B}(x)=0 \\
& \Leftrightarrow \chi_{A}(x)+\chi_{B}(x)-\chi_{A \cap B}(x)=0 \ldots \text { (2) } \tag{2}
\end{align*}
$$

From (1) and (2) we get
$\chi_{A \cup B}(x)=\chi_{A}(x)+\chi_{B}(x)-\chi_{A \cap B}(x)$
$\therefore|A \cup B|=|A|+|B|-|A \cap B|$.
ii) Using Characteristic function, prove that $(\overline{A \cup B})=\bar{A} \cap \bar{B}$.

Proof:

$$
\begin{aligned}
\chi_{\overline{A \cup B}}(x)=1 & \Leftrightarrow x \in(\overline{A \cup B}) \\
& \Leftrightarrow x \notin A \cup B \\
& \Leftrightarrow x \notin A \text { and } x \notin B \\
& \Leftrightarrow x \in \bar{A} \text { and } x \in \bar{B} \\
& \Leftrightarrow x \in \bar{A} \cap \bar{B} \\
& \Leftrightarrow \chi_{\bar{A} \cap \bar{B}}(x)=1 \ldots(\overline{A \cup B}) \\
\chi_{\overline{A \cup B}}(x)=0 & \Leftrightarrow x \notin(\overline{A \cup B} \\
& \Leftrightarrow x \in A \cup B \\
& \Leftrightarrow x \in A \text { or } x \in B \\
& \Leftrightarrow x \notin \bar{A} \text { or } x \notin \bar{B} \\
& \Leftrightarrow x \notin \bar{A} \cap \bar{B} \\
& \Leftrightarrow \chi_{\bar{A} \cap \bar{B}}(x)=0 \ldots(2)
\end{aligned}
$$

From (1) and (2) we get
$\chi_{\overline{A \cup B}}(x)=\chi_{\bar{A} \cap \bar{B}}(x), \quad \forall x \in U$
$\therefore(\overline{A \cup B})=\bar{A} \cap \bar{B}$

