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ANNA UNIVERSITY OF TECHNOLOGY, COIMBATORE 

B.E./B.TECH. DEGREE EXAMINATIONS: NOV/DEC 2006 

FIFTH SEMESTER : CSE 

DISCRETE MATHEMATICS 

 

Part-A  (𝟐 × 𝟏𝟎 = 𝟐𝟎) 

1. If 𝑷,𝑸 and 𝑹 are statement variables, prove that 

𝑷 ∧   ∼ 𝑷 ∧ 𝑸 ∨  ∼ 𝑷 ∧∼ 𝑸  ⇒ 𝑹 

Solution: 

𝑃 ∧   ∼ 𝑃 ∧ 𝑄 ∨  ∼ 𝑃 ∧∼ 𝑄  ⇔ 𝑃 ∨  ∼ 𝑃 ∧  𝑄 ∨∼ 𝑄   

⇔ 𝑃 ∧  ∼ 𝑃 ∧ 𝑇  

⇔ 𝑃 ∧∼ 𝑃 ⇔ 𝐹 ⇒ 𝑅 [∵  𝐹 𝑖𝑠 𝑎𝑛𝑦 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 𝑓𝑜𝑟𝑚𝑢𝑙𝑎] 

 

2. Prove that whenever 𝑨 ∧ 𝑩 ⇒ 𝑪, we also have 𝑨 ⇒  𝑩 → 𝑪  and vice versa. 

Solution: 

Assume that 𝐴 ∧ 𝐵 ⇒ 𝐶. To prove 𝐴 ⇒  𝐵 → 𝐶 . Suppose that 𝐴 is True and 𝐵 → 𝐶 is False. Hence 

𝐵 is True and 𝐶 is False. ∴  𝐴 ∧ 𝐵 is True but 𝐶 is False, which is contradiction to our assumption. 

Assume that 𝐴 ⇒  𝐵 → 𝐶 . To prove  𝐴 ∧ 𝐵 ⇒ 𝐶. Suppose that 𝐴 ∧ 𝐵 is True and 𝐶 is False. Hence 

𝐴 and 𝐵 are True. ∴  𝐴 is True but 𝐵 → 𝐶 is False, which is contradiction to our assumption. 

∴ Whenever 𝐴 ∧ 𝐵 ⇒ 𝐶, we also have 𝐴 ⇒  𝐵 → 𝐶  and vice versa. 

 

3. Give an example to show that  ∃𝒙  𝑨 𝒙 ∧ 𝑩 𝒙   need not be a conclusion from  ∃𝒙  𝑨 𝒙   

and  ∃𝒙  𝑩 𝒙   

Solution: 

Let 𝐴 = {1} and 𝐵 = {2} 

Let 𝐴 𝑥 = 𝑥 ∈ 𝐴 and 𝐵 𝑥 = 𝑥 ∈ 𝐵 

Since A and B are non empty,  ∃𝑥 𝐴(𝑥) and  ∃𝑥 𝐵(𝑥) are both true. Since 𝐴 ∩  𝐵 = ∅ 

 ∃𝑥  𝐴 𝑥 ∧ 𝐵 𝑥   is false. 

 ∃𝑥  𝐴 𝑥 ∧ 𝐵 𝑥   need not be a conclusion from  ∃𝑥  𝐴 𝑥   and  ∃𝑥  𝐵 𝑥  . 

 

4. Find the truth value of  𝒙  𝑷 → 𝑸 𝒙  ∨  ∃𝒙 𝑹 𝒙  where 𝑷: 𝟐 > 1, 𝑄 𝒙 : 𝒙 > 3, 𝑅 𝒙 : 𝒙 > 4 

with the universe of discourse being 𝑬 =  𝟐,𝟑, 𝟒 . 

Solution: 

𝑃 is True and 𝑄(4) is false 𝑃 → 𝑄(4) is false. 

 𝑥  𝑃 → 𝑄 𝑥   is false 

Since 𝑅(2), 𝑅(3), 𝑅(4) are all false.  ∃𝑥 𝑅 𝑥  is false. Hence  𝑥  𝑃 → 𝑄 𝑥  ∨  ∃𝑥 𝑅 𝑥  is false. 

 

5. For any sets 𝑨, 𝑩 and 𝑪, prove that 𝑨 ×  𝑩 ∩ 𝑪 =  𝑨 × 𝑩 ∩  𝑨 × 𝑩 . 

Solution: 

Let  𝑥, 𝑦 ∈ 𝐴 ×  (𝐵 ∩ 𝐶) 

⇔  𝑥 ∈  𝐴 𝑎𝑛𝑑 𝑦 ∈  (𝐵 ∩ 𝐶) 

⇔ ( 𝑥 ∈  𝐴 𝑎𝑛𝑑 𝑦 ∈  𝐵) 𝑎𝑛𝑑 ( 𝑥 ∈  𝐴 𝑎𝑛𝑑 𝑦 ∈ 𝐶) 

⇔  𝑥, 𝑦 ∈ 𝐴 × 𝐵 𝑎𝑛𝑑  𝑥, 𝑦 ∈ 𝐴 × 𝐶 

⇔  𝑥, 𝑦 ∈  𝐴 × 𝐵 ∩ (𝐴 × 𝐶) 
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𝐴 ×  𝐵 ∩ 𝐶 =  𝐴 × 𝐵 ∩  𝐴 × 𝐵  

 

6. The following is the Hasse diagram of a partially ordered set. Verify whether it is a Lattice. 

 
Solution:  

𝑐 and 𝑒 are upper bounds of 𝑎 and 𝑏. As 𝑐 and 𝑒 cannot be compared, the LUB of 𝑎, 𝑏 does not exist. 

Therefore the Hasse diagram is not a Lattice.  

 

7. If 𝒇:𝑨 → 𝑩 and 𝒈: 𝑩 → 𝑪 are mappings and 𝒈 ∘ 𝒇:𝑨 → 𝑪  one-to-one, prove that 𝒇 is one-to-

one. 

Solution:  

Let us assume that 𝑓 𝑥 = 𝑓 𝑦 ⇒ 𝑔 𝑓 𝑥  = 𝑔 𝑓 𝑦   

⇒ 𝑔 ∘ 𝑓 𝑥 = 𝑔 ∘ 𝑓 𝑦   

⇒ 𝑥 = 𝑦  ∵  𝑔 ∘ 𝑓 𝑖𝑠 𝑜𝑛𝑒 − 𝑡𝑜 − 𝑜𝑛𝑒   

∴ 𝑓 𝑥 = 𝑓 𝑦 ⇒ 𝑥 = 𝑦 

∴ 𝑓 is one-to-one. 

 

8. If 𝝌𝑨(𝒙) denotes the characteristic function of the set 𝑨, prove that  

𝝌𝑨∪𝑩 𝒙 = 𝝌𝑨 𝒙 + 𝝌𝑩 𝒙 − 𝝌𝑨∩𝑩 𝒙  

Solution: 

𝜒𝐴∪𝐵 𝑥 = 1 … (1) 

⇒ 𝑥 ∈ 𝐴 ∪ 𝐵 

⇒ 𝑥 ∈ 𝐴 𝑜𝑟 𝑥 ∈ 𝐵 

⇒ 𝜒𝐴 𝑥 = 1 𝑜𝑟  𝜒𝐵 𝑥 = 1  

⇒ 𝜒𝐴 𝑥 + 𝜒𝐵 𝑥 − 𝜒𝐴 𝑥 . 𝜒𝐵 𝑥 = 1 

⇒ 𝜒𝐴 𝑥 + 𝜒𝐵 𝑥 − 𝜒𝐴∩𝐵 𝑥 = 1 … (2) 

𝜒𝐴∪𝐵 𝑥 = 1 … (3) 

⇒ 𝑥 ∉ 𝐴 ∪ 𝐵 

⇒ 𝑥 ∉ 𝐴 𝑎𝑛𝑑 𝑥 ∉ 𝐵 

⇒ 𝜒𝐴 𝑥 = 1 𝑎𝑛𝑑 𝜒𝐵 𝑥 = 1  

⇒ 𝜒𝐴 𝑥 + 𝜒𝐵 𝑥 − 𝜒𝐴 𝑥 . 𝜒𝐵 𝑥 = 0 

⇒ 𝜒𝐴 𝑥 + 𝜒𝐵 𝑥 − 𝜒𝐴∩𝐵 𝑥 = 0 … (4) 

From (1), (2), (3) and (4), we get 

𝜒𝐴∪𝐵 𝑥 = 𝜒𝐴 𝑥 + 𝜒𝐵 𝑥 − 𝜒𝐴∩𝐵 𝑥  

 

9. If 𝑺 denotes the set of positive integers ≤ 𝟏𝟎𝟎, for 𝒙, 𝒚 ∈ 𝑺, define 𝒙 ∗ 𝒚 = 𝐦𝐢𝐧 𝒙, 𝒚 . Verify 

whether  𝑺,∗  is a Monoid assuming that  ∗ is associative.  

d 

a b 

e 

c 
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Solution: 

The identity element is 𝑒 = 100 exists. Since for 𝑥 ∈ 𝑆, min 𝑥, 100 = 𝑥 ⇒ 𝑥 ∗ 100 = 𝑥, ∀ 𝑥 ∈ 𝑆 

∴  𝑆,∗  is a Monoid. 

 

10. If 𝑯 is a subgroup of the group 𝑮, among the right cosets of 𝑯 in 𝑮, prove that there is only 

one subgroup 𝑯. 

Solution:  

Let 𝐻𝑎 be a right coset of 𝐻 in 𝐺 where 𝑎 ∈ 𝐺. If 𝐻𝑎 is a subgroup of 𝐺, 

Then 𝑒 ∈ 𝐻𝑎, where 𝑒 is the identity element in 𝐺. 𝐻𝑎 is an equivalence class containing a with 

respect to an equivalence relation. 

∴ 𝑒 ∈ 𝐻 ⇒  𝐻𝑒 = 𝐻𝑎. But 𝐻𝑒 = 𝐻 

∴  𝐻𝑎 = 𝐻. This shows 𝐻 is only subgroup. 

 

Part-B  (𝟓 × 𝟏𝟔 = 𝟖𝟎) 

11. (a)(i) Prove that  𝑷 → 𝑸 ∧  𝑸 → 𝑹 ⇒  𝑷 → 𝑹  

Solution: 

To prove 𝑆:   𝑃 → 𝑄 ∧  𝑄 → 𝑅  →  𝑃 → 𝑅    is a Tautology. 

𝑷 𝑸 𝑹 𝑷 → 𝑸 𝑸 → 𝑹 𝑷 → 𝑹  𝑷 → 𝑸 ∧  𝑸 → 𝑹  𝑺 

F F F T T T T T 

F T F T F T F T 

T F F F T F F T 

T T F T F F F T 

F F T T T T T T 

F T T T T T T T 

T F T F T T F T 

T T T T T T T T 

 

∴   𝑃 → 𝑄 ∧  𝑄 → 𝑅  →  𝑃 → 𝑅    is a Tautology 

∴  𝑃 → 𝑄 ∧  𝑄 → 𝑅 ⇒  𝑃 → 𝑅  

 

(ii) Find the principal conjunctive and principal disjunctive normal forms of the formula 

𝑺 ⇔  𝑷 →  𝑸 ∧ 𝑹  ∧  ∼ 𝑷 →  ∼ 𝑸 ∧∼ 𝑹    

Solution:  

𝑆 ⇔  𝑃 →  𝑄 ∧ 𝑅  ∧  ∼ 𝑃 →  ∼ 𝑄 ∧∼ 𝑅   

   ⇔  ∼ 𝑃 ∨  𝑄 ∧ 𝑅  ∧  𝑃 ∨  ∼ 𝑄 ∧∼ 𝑅   

   ⇔  ∼ 𝑃 ∨ 𝑄 ∧  ∼ 𝑃 ∨ 𝑅 ∧  𝑃 ∨∼ 𝑄 ∧  𝑃 ∨∼ 𝑅     𝑤𝑕𝑖𝑐𝑕 𝑖𝑠 𝐶𝑁𝐹 

   ⇔  ∼ 𝑃 ∨ 𝑄 ∨ 𝐹 ∧  ∼ 𝑃 ∨ 𝐹 ∨ 𝑅 ∧  𝑃 ∨∼ 𝑄 ∨ 𝐹 ∧  𝑃 ∨ 𝐹 ∨∼ 𝑅  

   ⇔  ∼ 𝑃 ∨ 𝑄 ∨  𝑅 ∧∼ 𝑅  ∧  ∼ 𝑃 ∨  𝑄 ∧∼ 𝑄 ∨ 𝑅 ∧  𝑃 ∨∼ 𝑄 ∨  𝑅 ∧∼ 𝑅   

          ∧  𝑃 ∨  𝑄 ∧∼ 𝑄 ∨∼ 𝑅  

   ⇔  ∼ 𝑃 ∨ 𝑄 ∨ 𝑅 ∧  ∼ 𝑃 ∨ 𝑄 ∨∼ 𝑅 ∧  ∼ 𝑃 ∨ 𝑄 ∨ 𝑅 ∧  ∼ 𝑃 ∨∼ 𝑄 ∨ 𝑅 ∧  𝑃 ∨∼ 𝑄 ∨ 𝑅  

          ∧  𝑃 ∨∼ 𝑄 ∨∼ 𝑅 ∧  𝑃 ∨ 𝑄 ∨∼ 𝑅 ∧  𝑃 ∨∼ 𝑄 ∨∼ 𝑅  

   ⇔  ∼ 𝑃 ∨ 𝑄 ∨ 𝑅 ∧  ∼ 𝑃 ∨ 𝑄 ∨∼ 𝑅 ∧  ∼ 𝑃 ∨∼ 𝑄 ∨ 𝑅 ∧  𝑃 ∨∼ 𝑄 ∨ 𝑅  

          ∧  𝑃 ∨∼ 𝑄 ∨∼ 𝑅 ∧  𝑃 ∨ 𝑄 ∨∼ 𝑅    𝑤𝑕𝑖𝑐𝑕 𝑖𝑠 𝑃𝐶𝑁𝐹. 

∼ 𝑆 ≡ 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑚𝑎𝑥 𝑡𝑒𝑟𝑚𝑠 
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∼ 𝑆 ≡  𝑃 ∨ 𝑄 ∨ 𝑅 ∧  ∼ 𝑃 ∨∼ 𝑄 ∨∼ 𝑅  

∼∼ 𝑆 ≡∼   𝑃 ∨ 𝑄 ∨ 𝑅 ∧  ∼ 𝑃 ∨∼ 𝑄 ∨∼ 𝑅   

𝑆 ≡  𝑃 ∧ 𝑄 ∧ 𝑅 ∨  ∼ 𝑃 ∧∼ 𝑄 ∧∼ 𝑅  𝑤𝑕𝑖𝑐𝑕 𝑖𝑠 𝑃𝐷𝑁𝐹. 

 

(b) (i) Using conditional proof, prove that  

∼ 𝑷 ∨ 𝑸, ∼ 𝑸 ∨ 𝑹, 𝑹 → 𝑺 ⇒ 𝑷 → 𝑺 

Solution: 

𝑖)  ∼ 𝑃 ∨ 𝑄              𝑅𝑢𝑙𝑒 𝑃 

𝑖𝑖)  ∼ 𝑄 ∨ 𝑅            𝑅𝑢𝑙𝑒 𝑃 

𝑖𝑖𝑖) 𝑅 → 𝑆               𝑅𝑢𝑙𝑒 𝑃 

𝑖𝑣) 𝑃                       𝑅𝑢𝑙𝑒 𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑟𝑒𝑚𝑖𝑠𝑒𝑠 

𝑣) 𝑄                       𝑅𝑢𝑙𝑒 𝑇, 𝑖, 𝑖𝑣 𝑎𝑛𝑑 𝐷𝑖𝑠𝑗𝑢𝑛𝑐𝑡𝑖𝑣𝑒 𝑆𝑦𝑙𝑙𝑜𝑔𝑖𝑠𝑚  

𝑣𝑖) 𝑅                     𝑅𝑢𝑙𝑒 𝑇, 𝑖𝑖, 𝑣 𝑎𝑛𝑑 𝐷𝑖𝑠𝑗𝑢𝑛𝑐𝑡𝑖𝑣𝑒 𝑆𝑦𝑙𝑙𝑜𝑔𝑖𝑠𝑚 

𝑣𝑖𝑖) 𝑆                   𝑅𝑢𝑙𝑒 𝑇, 𝑖𝑖𝑖, 𝑣𝑖 𝑎𝑛𝑑 𝑀𝑜𝑑𝑢𝑠 𝑝𝑕𝑜𝑛𝑒𝑠 

𝑣𝑖𝑖𝑖) 𝑃 → 𝑆        𝑅𝑢𝑙𝑒 𝐶𝑃 

 

(ii) By using truth tables, verify whether the following specifications are consistent; “Whenever 

the system software is being upgraded users cannot access the file system. If users can access the 

file system, then they can save new files. If users cannot save new files then the system software 

is not being upgraded. 

Solution: 

Let P represents the system software is being upgraded. 

Let Q represents users can access the file system. 

Let R represents users can save the file. 

𝑃 →∼ 𝑄, 𝑄 → 𝑅, ∼ 𝑅 →∼ 𝑃 

Let 𝑆 =  𝑃 →∼ 𝑄 ∧  𝑄 → 𝑅 ∧ ( ∼ 𝑅 →∼ 𝑃) 

𝑷 𝑸 𝑹 ∼ 𝑷 ∼ 𝑸 ∼ 𝑹 𝑷 →∼ 𝑸 𝑸 → 𝑹 ∼ 𝑹 →∼ 𝑷 𝑺 

F F F T T T T T T T 

F T F T F T T F T F 

T F F F T T T T F F 

T T F F F T F F F F 

F F T T T F T T T T 

F T T T F F T T T T 

T F T F T F T T T T 

T T T F F F F T T F 

 

From the truth table, 𝑆 has the truth value 𝑇 whenever all premises are assigned the truth value 𝑇. 

∴ The premises are consistent.  

 

12.(a)(i) Use indirect method of proof to show that  

 𝒙  𝑷 𝒙 ∨ 𝑸 𝒙  ⇒  𝒙  𝑷 𝒙  ∨  ∃𝒙  𝑸 𝒙   

Solution: 

Let us assume that ¬  𝑥 𝑃 𝑥 ∨ (∃𝑥)𝑄(𝑥)  as additional premise 

1. ¬  𝑥 𝑃 𝑥 ∨  ∃𝑥 𝑄 𝑥                                       𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑟𝑒𝑚𝑖𝑠𝑒 
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2. ¬ 𝑥  𝑃 𝑥 ∧ ¬  ∃𝑥 𝑄 𝑥                                    1, 𝐷𝑒 𝑀𝑜𝑟𝑔𝑎𝑛′𝑠 𝑙𝑎𝑤              

3. ¬ 𝑥  𝑃 𝑥                                                                𝑅𝑢𝑙𝑒 𝑇, 2 

4.  ∃𝑥 ¬ 𝑃 𝑥                                                             3, 𝐷𝑒 𝑀𝑜𝑟𝑔𝑎𝑛′𝑠 𝑙𝑎𝑤 

5. ¬ 𝑃 𝑎                                                                     𝑅𝑢𝑙𝑒 𝐸𝑆, 4              

6. ¬  ∃𝑥 𝑄 𝑥                                                            𝑅𝑢𝑙𝑒 𝑇, 2           

7.  𝑥 ¬ 𝑄 𝑥                                                              6, 𝐷𝑒 𝑀𝑜𝑟𝑔𝑎𝑛′𝑠 𝑙𝑎𝑤  

8.  ¬𝑄 𝑎                                                                    𝑅𝑢𝑙𝑒 𝑈𝑆, 7   

9. ¬ 𝑃 𝑎 ∧ ¬𝑄 𝑎                                                   5,8, 𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛   

10. ¬  𝑃 𝑎 ∨ 𝑄 𝑎                                                9, 𝐷𝑒 𝑀𝑜𝑟𝑔𝑎𝑛′𝑠 𝑙𝑎𝑤         

11. (𝑥) (𝑃 𝑥 ∨ (𝑄(𝑥))                                         𝑅𝑢𝑙𝑒 𝑃         

12.  𝑃 𝑎 ∨ 𝑄 𝑎                                                      𝑅𝑢𝑙𝑒 𝑈𝑆, 11         

13. ¬   𝑃 𝑎 ∨ 𝑄 𝑎  ∧   𝑃 𝑎 ∨ 𝑄 𝑎                11,12, 𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛        

14.  𝐹                                                                         𝑅𝑢𝑙𝑒 𝑇, 13        

∴ By the method of contradiction 

 𝑥  𝑃 𝑥 ∨ 𝑄 𝑥  ⇒  𝑥  𝑃 𝑥  ∨  ∃𝑥  𝑄 𝑥   

 

(ii) Prove that  ∃𝒙 𝑷 𝒙 →  𝒙 𝑸 𝒙 ⇒  𝒙  𝑷 𝒙 → 𝑸(𝒙)  

Solution: 

     1.   ∃𝑥 𝑃 𝑥 →  𝑥 𝑄 𝑥                                       𝑅𝑢𝑙𝑒 𝑃     

     2. ¬ ∃𝑥 𝑃 𝑥 ∨  𝑥 𝑄 𝑥                                     𝑅𝑢𝑙𝑒 𝑇, 𝑐𝑜𝑛𝑗𝑢𝑐𝑡𝑖𝑜𝑛 𝑎𝑠 𝑑𝑖𝑠𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛   

     3.  𝑥 ¬𝑃 𝑥 ∨  𝑥 𝑄 𝑥                                       𝑅𝑢𝑙𝑒 𝑇, 2 

     4.  (¬𝑃 𝑎 ∨ 𝑄(𝑎))                                             𝑅𝑢𝑙𝑒 𝑈𝑆         

     5.   𝑃 𝑎 → 𝑄(𝑎)                                               𝑅𝑢𝑙𝑒 𝑇, 2, 𝑐𝑜𝑛𝑗𝑢𝑐𝑡𝑖𝑜𝑛 𝑎𝑠 𝑑𝑖𝑠𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛       

     6.  𝑥  𝑃 𝑥 → 𝑄(𝑥)                                         𝑅𝑢𝑙𝑒 𝑈𝐺  

 

(b) (i) Use conditional proof to prove that 

 𝒙  𝑷 𝒙 → 𝑸(𝒙) ⇒   𝒙 𝑷 𝒙 →  𝒙 𝑸 𝒙  

Solution: 

     1.   𝑥 𝑃(𝑥)                                                              𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑃𝑟𝑒𝑚𝑖𝑠𝑒     

     2.  𝑥  𝑃 𝑥 → 𝑄(𝑥)                                           𝑅𝑢𝑙𝑒 𝑃   

     3. 𝑃 𝑎 → 𝑄 𝑎                                                    𝑅𝑢𝑙𝑒 𝑈𝑆, 2 

     4.  𝑃 𝑎                                                                  𝑅𝑢𝑙𝑒 𝑈𝑆, 1        

     5.  𝑄 𝑎                                                                  𝑅𝑢𝑙𝑒 𝑇, 3,4, 𝑀𝑜𝑑𝑢𝑠 𝑝𝑕𝑜𝑛𝑒𝑠     

     6.  𝑥 𝑄 𝑥                                                            𝑅𝑢𝑙𝑒 𝑈𝐺 ,5 

     7.  𝑥 𝑃 𝑥 →  𝑥 𝑄 𝑥                                     𝑅𝑢𝑙𝑒 𝐶𝑃 

 

(ii) Prove that  ∃𝒙  𝑨 𝒙 ∨ 𝑩(𝒙) ⇔  ∃𝒙 𝑨 𝒙 ∨  ∃𝒙 𝑩(𝒙) 

Solution: 

            Let us assume that ¬  ∃𝑥 𝐴 𝑥 ∨ (∃𝑥)𝐵(𝑥)  as additional premise 

1. ¬  ∃𝑥 𝐴 𝑥 ∨ (∃𝑥)𝐵(𝑥)                                      𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑟𝑒𝑚𝑖𝑠𝑒 

2. ¬ ∃𝑥 𝐴 𝑥 ∧ ¬(∃𝑥)𝐵(𝑥)                                   1, 𝐷𝑒 𝑀𝑜𝑟𝑔𝑎𝑛′𝑠 𝑙𝑎𝑤              

3.  𝑥 ¬𝐴 𝑥 ∧ (𝑥)¬𝐵(𝑥)                                        2, 𝐷𝑒 𝑀𝑜𝑟𝑔𝑎𝑛′𝑠 𝑙𝑎𝑤 

4. ¬𝐴 𝑎 ∧ ¬𝐵(𝑎)                                                         𝑅𝑢𝑙𝑒 𝑈𝑆, 3 

5. ¬ 𝐴 𝑎 ∨ 𝐵(𝑎)                                                          4, 𝐷𝑒 𝑀𝑜𝑟𝑔𝑎𝑛′𝑠 𝑙𝑎𝑤 

6. (∃𝑥)(𝐴 𝑥 ∨ 𝐵(𝑥))                                                         𝑅𝑢𝑙𝑒 𝑃           

7. 𝐴 𝑎 ∨  𝐵(𝑎)                                                             𝑅𝑢𝑙𝑒 𝐸𝑆, 6    
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8. ¬  𝐴 𝑎 ∨  𝐵(𝑎) ∧  𝐴 𝑎 ∨  𝐵(𝑎)               5,7, 𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛        

9.  𝐹                                                                         𝑅𝑢𝑙𝑒 𝑇, 8 𝑎𝑛𝑑 𝑛𝑒𝑔𝑎𝑡𝑖𝑜𝑛 𝑙𝑎𝑤        

∴ By the method of contradiction 

 ∃𝑥  𝐴 𝑥 ∨ 𝐵(𝑥) ⇔  ∃𝑥 𝐴 𝑥 ∨  ∃𝑥 𝐵(𝑥) 

 

13.(a)(i) Prove that distinct equivalence classes are disjoint. 

Solution: 

Let 𝑅 be an equivalence relation defined on set 𝑋. 

Let  𝑥 𝑅 ,  𝑦 𝑅 are two distinct equivalence classes on 𝑋 

i.e., 𝑥𝑅𝑦 

Let us assume that there is at least one element 𝑧 ∈  𝑥 𝑅  𝑎𝑛𝑑 𝑎𝑙𝑠𝑜 𝑧 ∈  𝑦 𝑅 

i.e., 𝑥𝑅𝑧 𝑎𝑛𝑑 𝑦𝑅𝑧 ⇒ 𝑧𝑅𝑦(𝐵𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐) 

∴ 𝑥𝑅𝑧 𝑎𝑛𝑑 𝑧𝑅𝑦⇒𝑥𝑅𝑦(𝐵𝑦 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) 

Which is a contradiction. 

 𝑥 𝑅 ∩  𝑦 𝑅 = ∅ 

∴Distinct equivalence classes are disjoint. 

 

(ii) In a Lattice show that 𝒂 ≤ 𝒃 and 𝒄 ≤ 𝒅 implies 𝒂 ∗ 𝒄 ≤ 𝒃 ∗ 𝒅. 

Solution: 

For any 𝑎, 𝑏, 𝑐 ∈ 𝐿 

If 𝑎  𝑏 ⇒𝑐 ∗ 𝑎 ≤ 𝑐 ∗ 𝑏  

⇒𝑎 ∗ 𝑐 ≤ 𝑏 ∗ 𝑐 …  1 (𝐵𝑦 𝐶𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑒 𝑙𝑎𝑤) 

For any  𝑏, 𝑐, 𝑑 ∈ 𝐿 

If 𝑐  𝑑⇒ 𝑏 ∗ 𝑐 ≤ 𝑏 ∗ 𝑑 … (2) 

From (1) and (2) we get 

𝑎 ∗ 𝑐  𝑏 ∗ 𝑑 

 

(iii) In a distributive Lattice prove that 𝒂 ∗ 𝒃 = 𝒂 ∗ 𝒄 and 𝒂⨁𝒃 = 𝒂⨁𝒄 implies that 𝒃 = 𝒄. 

Solution: 

 𝑎 ∗ 𝑏 ⨁𝑐 =  𝑎 ∗ 𝑐 ⨁𝑐 = 𝑐…  1   𝑎 ∗ 𝑏 = 𝑎 ∗ 𝑐   𝑎𝑛𝑑 𝑎𝑏𝑠𝑜𝑟𝑏𝑡𝑖𝑜𝑛 𝑙𝑎𝑤   

 𝑎 ∗ 𝑏 ⨁𝑐 =  𝑎⨁𝑐 ∗  𝑏⨁𝑐   𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒 𝑙𝑎𝑤  

=  𝑎⨁𝑏 ∗  𝑏⨁𝑐 =  𝑎⨁𝑏 ∗  𝑐⨁𝑏   𝑎⨁𝑏 =  𝑎 ⨁𝑐 𝑎𝑛𝑑 𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑒 𝑙𝑎𝑤   

=  𝑎 ∗ 𝑐 ⨁𝑏 =  𝑎 ∗ 𝑏 ⨁𝑏 = 𝑏… (2) 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒 𝑎𝑛𝑑 𝑎𝑏𝑠𝑜𝑟𝑏𝑡𝑖𝑜𝑛 𝑙𝑎𝑤  

From (1) and (2) we get, 

𝑏 = 𝑐 

 

(b) (i) Let 𝑷 =   𝟏, 𝟐 ,  𝟑, 𝟒 ,  𝟓   be a partition of the set 𝑺 =  𝟏, 𝟐, 𝟑, 𝟒, 𝟓 . Construct an 

equivalence classes with respect to 𝑹 are precisely the members of 𝑷. 

Solution: 

Let 𝑅 =   1, 1 ,  1, 2 ,  2, 1 ,  2, 2 ,  3, 3 ,  3, 4 ,  4, 3 ,  4, 4 ,  5, 5   

Since  1, 1 ,  2, 2 ,  3, 3 ,  4, 4 ,  5, 5 ∈ 𝑅 

∴ 𝑅 𝑖𝑠 𝑟𝑒𝑓𝑙𝑒𝑥𝑖𝑣𝑒 

𝐹𝑜𝑟  1, 2 ,  3,4 ∈ 𝑅 𝑡𝑕𝑒𝑟𝑒 𝑖𝑠  2, 1 ,  4, 3 ∈ 𝑅 

∴ 𝑅 𝑖𝑠 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 
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𝐹𝑜𝑟  1, 2  𝑎𝑛𝑑  2,1 ∈ 𝑅 𝑡𝑕𝑒𝑟𝑒 𝑖𝑠  1, 1 ∈ 𝑅 

𝐹𝑜𝑟  2, 1  𝑎𝑛𝑑  1,2 ∈ 𝑅 𝑡𝑕𝑒𝑟𝑒 𝑖𝑠  2, 2 ∈ 𝑅 

𝐹𝑜𝑟  3, 4  𝑎𝑛𝑑  4,3 ∈ 𝑅 𝑡𝑕𝑒𝑟𝑒 𝑖𝑠  3, 3 ∈ 𝑅 

𝐹𝑜𝑟  4, 3  𝑎𝑛𝑑  3,4 ∈ 𝑅 𝑡𝑕𝑒𝑟𝑒 𝑖𝑠  4, 4 ∈ 𝑅 

∴ 𝑅 𝑖𝑠 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒 

∴ 𝑅 𝑖𝑠 𝑎𝑛 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 

 1 𝑅 =  1,2 ,  3 𝑅 =  3,4 ,  5 𝑅 =  5  

Equivalence classes with respect to 𝑅 =   1 𝑅 ,  3 𝑅 ,  5 𝑅  

The equivalence classes with respect to 𝑅 are precisely the members of 𝑃 

 

(ii) Show that a chain with three of more elements is not complemented. 

Solution:  

Let 𝐿 be a chain with 0 and 1. Let 𝑜 < 𝑎 < 1. 

We show that ′𝑎′ has no element in 𝐿. 

Let 𝑏 ∈  𝐿 and 𝑏 be a complement to 𝑎. 

∴  𝑎 ∗ 𝑏 = 0 and 𝑎⨁ 𝑏 = 1 

Since 𝐿 is a chain, either 𝑎 ≤  𝑏 or 𝑏 ≤  𝑎 

If 𝑎 ≤  𝑏, then 0 = 𝑎 ∗ 𝑏 = 𝑎. But 𝑎 > 0 

Also if 𝑏 ≤  𝑎, then 1 = 𝑎⨁𝑏 = 𝑎. But 𝑎 < 1 

∴  𝑎 has no complement. 

 

(iii) Establish DeMorgan’s laws in a Boolean Algebra. 

Solution: 

(𝑎 ∗  𝑏) ′ =  𝑎′ ⊕  𝑏′, ∀ 𝑎, 𝑏 𝐿 

 𝑎 ∗ 𝑏 ⊕  𝑎′ ⊕𝑏′ =  𝑎 ⊕  𝑎′ ⊕ 𝑏′  ∗  𝑏 ⊕  𝑎′ ⊕ 𝑏′   

=  𝑎 ⊕  𝑎′ ⊕ 𝑏′  ∗   𝑎′ ⊕𝑏′ ⊕ 𝑏  

=   𝑎 ⊕ 𝑎′ ⊕ 𝑏′ ∗  𝑎′ ⊕  𝑏′ ⊕ 𝑏   

=  1 ⊕ 𝑏′ ∗  𝑎′ ⊕ 1 = 1 ∗ 1 

 𝑎 ∗ 𝑏 ⊕  𝑎′ ⊕ 𝑏′ = 1 … (1) 

 𝑎 ∗ 𝑏 ∗  𝑎′ ⊕ 𝑏′ =   𝑎 ∗ 𝑏 ∗ 𝑎′ ⊕   𝑎 ∗ 𝑏 ∗ 𝑏′  

=   𝑏 ∗ 𝑎 ∗ 𝑎′ ⊕   𝑎 ∗ 𝑏 ∗ 𝑏′  

=  𝑏 ∗  𝑎 ∗ 𝑎′  ⊕  𝑎 ∗  𝑏 ∗ 𝑏′   

=  𝑏 ∗ 0 ⊕  𝑎 ∗ 0 = 0 ⊕ 0 

 𝑎 ∗ 𝑏 ∗  𝑎′ ⊕ 𝑏′ = 0 … (2) 

𝐹𝑟𝑜𝑚  1  𝑎𝑛𝑑  2  𝑤𝑒 𝑔𝑒𝑡, 

 𝑎 ∗ 𝑏 ′ = 𝑎′ ⊕𝑏′ 

By duality,  𝑎 ⊕ 𝑏 ′ = 𝑎′ ∗ 𝑏′ 

 

14.(a)(i) Find all mappings from 𝑨 =  𝟏,𝟐, 𝟑  to 𝑩 =  𝟒,𝟓 . Find which of them are one-to-one and 

which are onto. 
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Solution: 

 
 

None of the above mappings are one-to-one. (i) and (viii) are not onto mapping but the remaining 

mappings are onto. 

 

(ii) If 𝒇 =  
𝟏 𝟐 𝟑
𝟑 𝟐 𝟏

    
𝟒
𝟒
  and 𝒈 =  

𝟏 𝟐 𝟑
𝟐 𝟑 𝟒

    
𝟒
𝟏
 , are permutations, prove that  

 𝒈 ∘ 𝒇 −𝟏 = 𝒇−𝟏 ∘ 𝒈−𝟏 

Solution: 

𝑔 ∘ 𝑓 =  
1 2 3
4 3 2

    
4
1
 … (1) 

𝑓−1 =  
1 2 3
3 2 1

    
4
4
  

𝑔−1 =  
1 2 3
4 1 2

    
4
3
  

𝑓−1 ∘ 𝑔−1 =  
1 2 3
4 3 2

    
4
1
 … (2) 

From (1) and (2), we get 

 𝑔 ∘ 𝑓 −1 = 𝑓−1 ∘ 𝑔−1 

 

(iii) If R denotes the set of real numbers and 𝒇: 𝑹 → 𝑹 is given by 𝒇 𝒙 = 𝒙𝟑 − 𝟐, find 𝒇−𝟏. 

Solution:  

𝑓 𝑥 = 𝑓 𝑦 ⇒ 𝑥3 − 2 = 𝑦3 − 2 ⇒ 𝑥3 = 𝑦3 ⇒ 𝑥 = 𝑦 

∴ 𝑓 is one to one. 

A 
B 

3 

2 

1 

5 

4 

B A 

i) ii) 

B A 

B A B A B A 

B A B A 

 iii) 

iv) v) vi) 

vii) viii) 

1 

1 
1 

1 1 

1 1 

2 
2 

2 2 2 

2 2 

3 

4 

5 
3 

4 

5 

3 

4 

5 
3 

4 

5 
3 

4 

5 

3 

4 

5 3 

4 

5 
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Let 𝑦 ∈ 𝑅. 

𝑓 𝑥 = 𝑦 ⇒ 𝑥3 − 2 = 𝑦 ⇒ 𝑥3 = 𝑦 + 2 ⇒ 𝑥 =  𝑦 + 2 
1
3 

Therefore for every image in R there is a pre-image in R. 

∴ 𝑓 is onto. 

∴ 𝑓−1 exists. 

𝑓−1 𝑦 =  𝑦 + 2 
1
3 

 

14.(b) (i) If  𝒁+ denote the set of positive integers and 𝒁 denote the set of integers. Let 𝒇:  𝒁+ → 𝒁 

be defined by  

   𝒇(𝒏)  =   

𝒏

𝟐
 , 𝒊𝒇 𝒏 𝒊𝒔 𝒆𝒗𝒆𝒏

𝟏−𝒏

𝟐
, 𝒊𝒇 𝒏 𝒊𝒔 𝒐𝒅𝒅  

  . Prove that 𝒇 is a bijection and find 𝒇−𝟏. 

Solution: 

To prove 𝑓 is one to one:  

∀𝑥, 𝑦 ∈  𝑍+ 

Case: 1 when 𝑥 𝑎𝑛𝑑 𝑦 𝑎𝑟𝑒 𝑒𝑣𝑒𝑛  

𝑓 𝑥 = 𝑓 𝑦 ⇒
𝑥

2
=

𝑦

2
⇒ 𝑥 = 𝑦 

Case: 2 when 𝑥 𝑎𝑛𝑑 𝑦 𝑎𝑟𝑒 𝑜𝑑𝑑  

𝑓 𝑥 = 𝑓 𝑦 ⇒
1 − 𝑥

2
=

1 − 𝑦

2
⇒ 1 − 𝑥 = 1 − 𝑦 ⇒ 𝑥 = 𝑦 

∴ From case: 1 and case: 2, 𝑓 is one to one. 

To prove 𝑓 is onto: 

𝑊𝑕𝑒𝑛 𝑥 𝑖𝑠 𝑒𝑣𝑒𝑛 

Let 𝑦 =
𝑥

2
⇒𝑥 = 2𝑦 

∀𝑥 ∈ 𝑍, 𝑥 = 𝑓 2𝑥  

∴  ∀𝑥 ∈ 𝑍, 𝑡𝑕𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑝𝑟𝑒 𝑖𝑚𝑎𝑔𝑒 2𝑥 ∈  𝑍+ 

𝑊𝑕𝑒𝑛 𝑥 𝑖𝑠 𝑜𝑑𝑑 

Let 𝑦 =
1−𝑥

2
⇒1 − 𝑥 = 2𝑦⇒𝑥 = 1 − 2𝑦 

∀𝑥 ∈ 𝑍, 𝑥 = 𝑓(1 − 2𝑥) 

∴  ∀𝑥 ∈ 𝑍, 𝑡𝑕𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑝𝑟𝑒 𝑖𝑚𝑎𝑔𝑒 1 − 2𝑥 ∈  𝑍+ 

Every element has unique pre-image 

∴  𝑓 is onto  

∴  𝑓 is bijection ⇒ 𝑓−1  exists. 

𝑊𝑕𝑒𝑛 𝑥 𝑖𝑠 𝑒𝑣𝑒𝑛 

Let 𝑦 =
𝑥

2
⇒𝑥 = 𝑓−1 𝑦 = 2𝑦 

𝑊𝑕𝑒𝑛 𝑥 𝑖𝑠 𝑜𝑑𝑑 

Let 𝑦 =
1−𝑥

2
⇒1 − 𝑥 = 2𝑦⇒𝑥 = 𝑓−1 𝑦 = 1 − 2𝑦 

 

   𝑓−1(𝑛)  =   
2𝑛 , 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

1 − 2𝑛, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑  
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(ii) Let 𝑨, 𝑩 and 𝑪 be any three non empty sets. Let 𝒇: 𝑨 →  𝑩 and 𝒈: 𝑩 → 𝑪 be mappings. If 𝒇 and 

𝒈 are onto, prove that 𝒈 ∘  𝒇: 𝑨 → 𝑪 is onto. Also give an example to show that 𝒈 ∘ 𝒇 may be onto 

but both f and g need not be onto. 

Solution: 

Since 𝑓 ∶  𝐴 → 𝐵 is onto 

𝑓 𝑥 = 𝑦, ∀𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑦 ∈ 𝐵… (1) 

Since 𝑔 ∶  𝐵 → 𝐶 is onto 

𝑔 𝑦 = 𝑧, ∀𝑧 ∈ 𝐶 𝑎𝑛𝑑 𝑦 ∈ 𝐵… (2) 

∀𝑥 ∈ 𝐴, 𝑔𝑜𝑓 𝑥 = 𝑔 𝑓 𝑥  = 𝑔 𝑦 = 𝑧 [𝑓𝑟𝑜𝑚  1  𝑎𝑛𝑑  2 ] 

∴ ∀𝑧 ∈ 𝐶 𝑡𝑕𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎 𝑝𝑟𝑒𝑖𝑚𝑎𝑔𝑒 𝑥 ∈ 𝐴 𝑠𝑢𝑐𝑕 𝑡𝑕𝑎𝑡 𝑔𝑜𝑓 𝑥 = 𝑧  

∴ 𝑔𝑜𝑓 ∶  𝐴 → 𝐶 is onto 

For example 

Let 𝐴 =  1, 2 , 𝐵 =  𝑎, 𝑏, 𝑐 𝑎𝑛𝑑 𝐶 = {𝑑, 𝑒}  

𝑓 =   1, 𝑎 ,  2, 𝑏  , 𝑔 = { 𝑎, 𝑑 ,  𝑏, 𝑒 ,  𝑐, 𝑒 } 

𝑔𝑜𝑓 1 = 𝑔 𝑓 1  = 𝑔 𝑎 = 𝑑 

𝑔𝑜𝑓 2 = 𝑔 𝑓 2  = 𝑔 𝑏 = 𝑒 

𝑔𝑜𝑓 =   1, 𝑑 ,  2, 𝑒   

The function 𝑓 is not onto because 𝑐 ∈ 𝐵 does not have pre image. 

The function 𝑔 is not onto because every element of 𝐶 have pre image but  

it is not unique. 𝑒 ∈ 𝐶 𝑕𝑎𝑣𝑒 𝑡𝑤𝑜 𝑝𝑟𝑒 𝑖𝑚𝑎𝑔𝑒𝑠 𝑏, 𝑐 ∈ 𝐵 

The function 𝑔𝑜𝑓 is onto because every element of 𝐶 have pre image and it is unique. 

∴ 𝑔 ∘ 𝑓 may be onto but both f and g need not be onto. 

 

15.(a)(i) State and prove Lagrange’s theorem for finite groups. 

Statement: 

The order of a subgroup of a finite group is a divisor of the order of the group. 

Proof: 

Let 𝑎𝐻 and 𝑏𝐻 be two left cosets of the subgroup {𝐻,∗} in the group {𝐺,∗}. 

Let the two cosets 𝑎𝐻 and 𝑏𝐻 be not disjoint. 

Then let 𝑐 be an element common to 𝑎𝐻 and 𝑏𝐻 i.e., 𝑐 ∈ 𝑎𝐻 ∩  𝑏𝐻 

∵ 𝑐 ∈ 𝑎𝐻, 𝑐 = 𝑎 ∗ 𝑕1, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑕1 ∈ 𝐻… (1) 

∵ 𝑐 ∈ 𝑏𝐻, 𝑐 = 𝑏 ∗ 𝑕2, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑕2 ∈ 𝐻… (2) 

From (1) and (2), we have 

𝑎 ∗ 𝑕1 = 𝑏 ∗ 𝑕2 

𝑎 = 𝑏 ∗ 𝑕2 ∗ 𝑕1
−1 … (3) 

             Let 𝑥 be an element in 𝑎𝐻 

             𝑥 = 𝑎 ∗ 𝑕3, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑕3 ∈ 𝐻 

= 𝑏 ∗ 𝑕2 ∗ 𝑕1
−1 ∗ 𝑕3, 𝑢𝑠𝑖𝑛𝑔 (3) 

             Since H is a subgroup, 𝑕2 ∗ 𝑕1
−1 ∗ 𝑕3 ∈ 𝐻 

             Hence, (3) means 𝑥 ∈ 𝑏𝐻 

             Thus, any element in 𝑎𝐻 is also an element in 𝑏𝐻. ∴  𝑎𝐻 ⊆ 𝑏𝐻 

              Similarly, we can prove that 𝑏𝐻 ⊆ 𝑎𝐻 

              Hence 𝑎𝐻 = 𝑏𝐻 

              Thus, if 𝑎𝐻 and 𝑏𝐻 are disjoint, they are identical. 

              The two cosets 𝑎𝐻 and 𝑏𝐻 are disjoint or identical. …(4) 
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              Now every element 𝑎 ∈ 𝐺  belongs to one and only one left coset of 𝐻 in 𝐺, 

             For,  

             𝑎 = 𝑎𝑒 ∈ 𝑎𝐻, 𝑠𝑖𝑛𝑐𝑒 𝑒 ∈ 𝐻 ⇒ 𝑎 ∈ 𝑎𝐻 

              𝑎 ∉ 𝑏𝐻, since 𝑎𝐻 and 𝑏𝐻 are disjoint i.e., 𝑎 belongs to one and only left coset of     

              𝐻 in 𝐺 i.e., 𝑎𝐻… (5) 

             From (4) and (5), we see that the set of left cosets of 𝐻 in 𝐺 form the partition of  

             𝐺. Now let the order of 𝐻 be 𝑚. 

             Let 𝐻 =  𝑕1, 𝑕2, … , 𝑕𝑚  ,𝑤𝑕𝑒𝑟𝑒 𝑕𝑖 ′𝑠 are distinct 

             Then 𝑎𝐻 =  𝑎𝑕1, 𝑎𝑕2,… , 𝑎𝑕𝑚   

              The elements of 𝑎𝐻  are also distinct, for, 𝑎𝑕𝑖 = 𝑎𝑕𝑗 ⇒ 𝑕𝑖 = 𝑕𝑗 , which is not  

              true. 

              Thus 𝐻 and 𝑎𝐻 have the same number of elements, namely 𝑚. 

              In fact every coset of 𝐻 in 𝐺 has exactly 𝑚 elements. 

              Now let the order of the group {𝐺,∗} be 𝑛, i.e., there are 𝑛 elements in 𝐺 

              Let the number of distinct left cosets of 𝐻 in 𝐺 be 𝑝. 

              ∴ The total number of elements of all the left cosets = 𝑝𝑚 = the total number 

              of elements of 𝐺. i.e., 𝑛 = 𝑝𝑚  

              i.e., 𝑚, the order of 𝐻 is adivisor of 𝑛, the order of 𝐺. 

 

(ii) Find all the non-trivial subgroups of  𝒁𝟔, +𝟔 . 

Solution:  𝑍6 , +6 , 𝑆 =   0   𝑢𝑛𝑑𝑒𝑟 𝑏𝑖𝑛𝑎𝑟𝑦 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 +6 are trivial subgroups  

 

+𝟔 [0] [1] [2] [3] [4] [5] 

[0] [0] [1] [2] [3] [4] [5] 

[1] [1] [2] [3] [4] [5] [0] 

[2] [2] [3] [4] [5] [0] [1] 

[3] [3] [4] [5] [0] [1] [2] 

[4] [4] [5] [0] [1] [2] [3] 

[5] [5] [0] [1] [2] [3] [4] 

 

𝑆1 =   0 ,  2 , [4]  

 

 

+𝟔 [0] [2] [4] 

[0] [0] [2] [4] 

[2] [2] [4] [0] 

[4] [4] [0] [2] 

 

From the above cayley’s table, 

 All the elements are closed under the binary operation +𝟔 

 Associativity is also true under the binary operation +𝟔 

 [0] is the identity element. 

 Inverse element of [2] is [4] and vise versa 

 Hence 𝑆1 =   0 ,  2 , [4]  is a subgroup of (𝑍6 , +6) 
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𝑆2 =   0 ,  3   

 

+𝟔 [0] [3] 

[0] [0] [3] 

[3] [3] [0] 

From the above cayley’s table, 

 All the elements are closed under the binary operation +𝟔 

 Associativity is also true under the binary operation +𝟔 

 [0] is the identity element. 

 Inverse element of [3] is itself.  

 Hence 𝑆2 =   0 ,  3   is a subgroup of (𝑍6 , +6) 

 Therefore 𝑆1 =   0 ,  2 , [4]  and 𝑆2 =   0 ,  3   are non trivial subgroups of (𝑍6 , +6) 

 

(b) If 𝑯 =  

𝟎   𝟏   𝟏   𝟏   𝟎   𝟎   𝟎
𝟏   𝟎   𝟏   𝟎   𝟏   𝟎   𝟎
𝟏   𝟎   𝟏   𝟎   𝟎   𝟏   𝟎
𝟏   𝟏   𝟎   𝟎   𝟎   𝟎   𝟏

  is the parity check matrix, find the Hamming code generated by 

H (in which the first three bits represent information portion and the next four bits are parity 

check bits). If 𝒚 = (𝟎, 𝟏, 𝟏, 𝟏, 𝟏, 𝟏, 𝟎) is the received word find the corresponding transmitted code 

word. 

Solution: 

Here 𝑒: 𝐵3 → 𝐵7  

𝐻 =  

0   1   1   1   0   0   0
1   0   1   0   1   0   0
1   0   1   0   0   1   0
1   1   0   0   0   0   1

 =  𝐴𝑇 |𝐼𝑛−𝑚  =  𝐴𝑇 |𝐼4  

The generator function is given by 

𝐺 =  𝐼𝑚 |𝐴 =  𝐼3|𝐴 =  
1 0 0
0 1 0
0 0 1

    
0 1 1
1 0 0
1 1 1

    
1
1
0
  

𝐵3 ≡  000, 001, 010, 100,011,101, 110, 111  

𝑒 𝑤 = 𝑤. 𝐺 

𝑒 000 =  0   0   0  
1 0 0
0 1 0
0 0 1

    
0 1 1
1 0 0
1 1 1

    
1
1
0
 =  0   0   0   0   0   0   0  

𝑒 001 =  0   0   1  
1 0 0
0 1 0
0 0 1

    
0 1 1
1 0 0
1 1 1

    
1
1
0
 =  0   0   1   1   1   1   0  

𝑒 010 =  0   1   0  
1 0 0
0 1 0
0 0 1

    
0 1 1
1 0 0
1 1 1

    
1
1
0
 =  0   1   0   1   0   0   1  

𝑒 100 =  1   0   0  
1 0 0
0 1 0
0 0 1

    
0 1 1
1 0 0
1 1 1

    
1
1
0
 =  1   0   0   0   1   1   1  

𝑒 011 =  0   1   1  
1 0 0
0 1 0
0 0 1

    
0 1 1
1 0 0
1 1 1

    
1
1
0
 =  0   1   1   0   1   1   1  

𝑒 101 =  1   0   1  
1 0 0
0 1 0
0 0 1

    
0 1 1
1 0 0
1 1 1

    
1
1
0
 =  1   0   1   1   0   0   1  
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𝑒 110 =  1   1   0  
1 0 0
0 1 0
0 0 1

    
0 1 1
1 0 0
1 1 1

    
1
1
0
 =  1   1   0   1   1   1  0  

𝑒 111 =  1   1   1  
1 0 0
0 1 0
0 0 1

    
0 1 1
1 0 0
1 1 1

    
1
1
0
 =  1   1   1   0   0   0   0  

𝐻.  𝑦 𝑇 =  

0   1   1   1   0   0   0
1   0   1   0   1   0   0
1   0   1   0   0   1   0
1   1   0   0   0   0   1

 

 
 
 
 
 
 
 
0
1
1
1
1
1
0 
 
 
 
 
 
 

=  

1
0
0
1

  

𝑆𝑖𝑛𝑐𝑒, 𝑡𝑕𝑒 𝑠𝑦𝑛𝑑𝑟𝑜𝑚𝑒  

1
0
0
1

  𝑖𝑠 𝑠𝑎𝑚𝑒 𝑎𝑠 𝑡𝑕𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑐𝑜𝑙𝑢𝑚𝑛 𝑜𝑓 𝐻, 𝑡𝑕𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 

 𝑖𝑛 𝑡𝑕𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑦 𝑖𝑠 𝑐𝑕𝑎𝑛𝑔𝑒𝑑.  

∴ 𝑇𝑕𝑒 𝑑𝑒𝑐𝑜𝑑𝑒𝑑 𝑤𝑜𝑟𝑑 𝑖𝑠 0011110 𝑎𝑛𝑑 𝑡𝑕𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑖𝑠 001. 

 


