UNIT-II

INTERPOLATION \& APPROXIMATION

LAGRANGE POLYNAMIAL

1. Find the polynomial $f(x)$ by using Lagrange's formula and hence find $f(3)$ for

$x:$	0	1	2	5
$f(x):$	2	3	12	147

Solution :

$x:$	0	x_{0}	1	x_{1}	2	x_{2}	5	x_{3}
$f(x):$	0	y_{0}	3	y_{1}	12	y_{3}	147	y_{4}

Lagrange's interpolation formula, we have

$$
\begin{align*}
y=f(x)= & \frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)} y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)} y_{1} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)} y_{2}+\frac{\left.\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} y_{3} \\
f(x)= & \frac{(x-1)(x-2)(x-5)}{(0-1)(0-2)(0-5)}(2)+\frac{(x-0)(x-2)(x-5)}{(1-0)(1-2)(1-5)}(3) \\
& +\frac{(x-0)(x-1)(x-5)}{(2-0)(2-1)(2-5)}(12)+\frac{(x-0)(x-1)(x-2)}{(5-0)(5-1)(5-2)}(147) \\
f(x)= & \frac{(x-1)(x-2)(x-5)}{-10}(2)+\frac{(x-0)(x-2)(x-5)}{4}(3) \tag{3}\\
& +\frac{(x-0)(x-1)(x-5)}{-6} \tag{147}
\end{align*}
$$

To find $f(3):(x=3):$

$$
\begin{align*}
y= & f(3)= \tag{3}\\
& \frac{(3-1)(3-2)(3-5)}{-10}(2)+\frac{(3-0)(3-2)(3-5)}{4} \tag{147}\\
& +\frac{(3-0)(3-1)(3-5)}{-6}(12)+\frac{(3-0)(3-1)(3-2)}{60} \\
y= & f(3)= \\
y= & f(3)=35 .
\end{align*}
$$

2. Using Lagrange's interpolation formula, calculate the profit in the 2000 year from the following data

Year	1997	1999	2001	2002
Profit in Lakhs:	43	65	159	248

Solution : Given the data's are

Year	$1997\left(x_{0}\right)$	1999	$\left(x_{1}\right)$	2001	$\left(x_{2}\right)$	2002	$\left(x_{3}\right)$	
Profit in Lakhs:	43	$\left(y_{0}\right)$	65	$\left(y_{1}\right)$	159	$\left(y_{2}\right)$	248	$\left(y_{3}\right)$

Lagrange's interpolation formula, we have

$$
\begin{align*}
& y=f(x)= \frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)} y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)} y_{1} \\
& \quad+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)} y_{2}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} y_{3} \\
& f(x)= \frac{(x-1999)(x-2001)(x-2002)}{(1997-1999)(1997-2001)(1997-2002)}(43)+\frac{(x-1997)(x-2001)(x-2002)}{(1999-1997)(1999-2001)(1999-2002)}(65) \\
&+ \frac{(x-1997)(x-1999)(x-2002)}{(2001-1997)(2001-1999)(2001-2002)}(159)+\frac{(x-1997)(x-1999)(x-2001)}{(2002-1997)(2002-1999)(2002-2001)} \\
& f(x)= \frac{(x-1999)(x-2001)(x-2002)}{-40}(43)+\frac{(x-1997)(x-2001)(x-2002)}{12} \\
& \quad+\frac{(x-1997)(x-1999)(x-2002)}{-8} \tag{43}
\end{align*}
$$

To find the profit in the year 2000 ($f(2000):(x=2000):)$

$$
\begin{align*}
& y=f(2000)= \frac{(2000-1999)(2000-2001)(2000-2002)}{-40}(43) \\
&+\frac{(2000-1997)(2000-2001)(2000-2002)}{12} \tag{65}\\
&+\frac{(2000-1997)(2000-1999)(2000-2002)}{-8} \tag{159}\\
&+\frac{(2000-1997)(2000-1999)(2000-2001)}{15} \tag{43}\\
& y=f(2000)=-2.15+32.5+119.25 \\
& y=f(2000)=100
\end{align*}
$$

Hence the profit in the year $\mathbf{2 0 0 0}$ is $\mathbf{1 0 0}$.

3. Using Lagrange's formula find $\boldsymbol{y}(2)$ from the following data.

$x:$	0	1	3	4	5
$f(x):$	0	1	81	256	625

Solution :

| $x:$ | $0\left(x_{0}\right)$ | $1\left(x_{1}\right)$ | $3\left(x_{2}\right)$ | $4\left(x_{3}\right)$ | $5\left(x_{4}\right)$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x):$ | $0\left(y_{0}\right)$ | $1 \quad\left(y_{1}\right)$ | 81 | $\left(y_{2}\right)$ | $256\left(y_{3}\right)$ | $625\left(y_{4}\right)$ |

Lagrange's interpolation formula, we have
$y=f(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)\left(x_{0}-x_{4}\right)} y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{1}-x_{4}\right)} y_{1}$

$$
\begin{align*}
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)\left(x_{2}-x_{4}\right)} y_{2}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{4}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)\left(x_{3}-x_{4}\right)} y_{3} \\
& \\
& \quad+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{4}-x_{0}\right)\left(x_{4}-x_{1}\right)\left(x_{4}-x_{2}\right)\left(x_{4}-x_{3}\right)} y_{4} \tag{1}\\
& f(x)=\frac{(x-1)(x-3)(x-4)(x-5)}{(0-1)(0-3)(0-4)(0-5)}(0)+\frac{(x-0)(x-3)(x-4)(x-5)}{(1-0)(1-3)\left(1-x_{3}\right)(1-5)}(1) \\
& + \tag{625}
\end{align*}
$$

To fond $y(2):(x=2)$:

$$
\begin{align*}
y=f(2)= & \frac{(2-1)(2-3)(2-4)(2-5)}{-48}(0)+\frac{(2-0)(2-3)(2-4)(2-5)}{-24} \\
& +\frac{(2-0)(2-1)(2-4)(2-5)}{12}(81)+\frac{(2-0)(2-1)(2-3)(2-5)}{40} \\
& +\frac{(2-0)(2-1)(2-3)(2-4)}{40}(625) \tag{625}\\
y=f(2)= & 0+0.5+81-128+62.5 \\
y=f(2)= & 16 .
\end{align*}
$$

4. Find the third degree polynomial satisfying the following data

$x:$	1	3	5	7
$f(x):$	24	120	336	720

Solution :

$x:$	$1\left(x_{0}\right)$	$3\left(x_{1}\right)$	$5\left(x_{2}\right)$	$7\left(x_{3}\right)$	
$f(x):$	$24\left(y_{0}\right)$	$120\left(y_{1}\right)$	336	$\left(y_{2}\right)$	$720\left(y_{3}\right)$

Lagrange's interpolation formula, we have

$$
\begin{align*}
& y=f(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)\left(x_{0}-x_{4}\right)} y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{1}-x_{4}\right)} y_{1} \\
& \quad+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)\left(x_{2}-x_{4}\right)} y_{2}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{4}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)\left(x_{3}-x_{4}\right)} y_{3} \\
& f(x)=\frac{(x-3)(x-5)(x-7)}{(1-3)(1-5)(1-7)}(24)+\frac{(x-1)(x-5)(x-7)}{(3-1)(3-5)(3-7)}(120)+\frac{(x-1)(x-3)(x-7)}{(5-1)(5-3)(5-7)}(336 \\
& \quad+\frac{(x-1)(x-3)(x-5)}{(7-1)(7-3)(7-5)}(720) \tag{720}
\end{align*}
$$

$$
\left.\begin{array}{rl}
\begin{array}{rl}
f(x)= & \frac{-1}{2}[(x-3)(x-5)(x-7)]+\frac{15}{2}[(x-1)(x-5)(x-7)]-21[(x-1)(x-3)(x-7)] \\
& \quad+15[(x-1)(x-3)(x-5)]
\end{array} \\
\begin{array}{rl}
f(x)= & \frac{-1}{2}\left[x^{3}-15 x^{2}+71 x-105\right]+\frac{15}{2}\left[x^{3}-13 x^{2}+47 x-35\right]-21\left[x^{3}-11 x^{2}+31 x-21\right] \\
& \quad+15\left[x^{3}-9 x^{2}+23 x-15\right]
\end{array} \\
f(x)= & x^{3}\left[-\frac{1}{2}+\frac{15}{2}-21+15\right]+x^{2}\left[\frac{15}{2}-\frac{195}{2}+231-135\right]+x\left[-\frac{71}{2}+\frac{705}{2}-605+345\right] \\
& \quad+\left[\frac{105}{2}-\frac{525}{2}+441-225\right]
\end{array}\right] \begin{aligned}
f(x)= & x^{3}+6 x^{2}+11 x+6 . \\
f(4)= & (4)^{3}+6(4)^{2}+11(4)+6 . \\
f(4)= & 64+96+44+6 \\
f(4)= & 210 .
\end{aligned}
$$

5. Using Lagrange's interpolation formula find $f(4)$ given that

$$
f(0)=2, f(1)=3, f(2)=12, f(15)=3587
$$

Solution : Given the data's are $\left[f\left(x_{0}\right)=y_{0}\right]$

| $x:$ | $0\left(x_{0}\right)$ | $1\left(x_{1}\right)$ | $2\left(x_{2}\right)$ | $15)\left(x_{3}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x):$ | $2\left(y_{0}\right)$ | $3\left(y_{1}\right)$ | $12\left(y_{2}\right)$ | $3587\left(y_{3}\right)$ |

Lagrange's interpolation formula, we have

$$
\begin{aligned}
\begin{aligned}
& y=f(x)= \frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)\left(x_{0}-x_{4}\right)} y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{1}-x_{4}\right)} y_{1} \\
& \quad+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)\left(x_{2}-x_{4}\right)} y_{2}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{4}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)\left(x_{3}-x_{4}\right)} y_{3} \\
& y=f(4)= \frac{(4-1)(4-2)(4-15)}{(0-1)(0-2)(0-15)}(2)+\frac{(4-0)(4-2)(4-15)}{(1-0)(1-2)(1-15)} \\
& \quad+\frac{(4-0)(4-1)(4-15)}{(2-0)(2-1)(2-15)}(12)+\frac{(4-0)(4-1)(4-2)}{(15-0)(15-1)(15-2)}(3587) \\
& f(4)= \frac{(3)(2)(-11)}{(-1)(-2)(-15)}(2)+\frac{(4)(2)(-11)}{(1)(-1)(-14)}(3)+\frac{(4)(3)(-11)}{(2)(1)(-13)}(12)+\frac{(4)(3)(2)}{(15)(14)(13)}(3587) \\
& f(4)= \frac{132}{30}-\frac{264}{14}+\frac{1584}{26}+\frac{86088}{2730} \\
& f(4)=
\end{aligned}
\end{aligned}
$$

6. Using Lagrange's polynomial fit a polynomial for the following data

$x:$	-1	1	2
$f(x):$	7	5	15

Solution :

| $x:$ | $\mathbf{- 1}\left(x_{-} 0\right)$ | $1\left(x_{-} 1\right)$ | $2\left(x_{-} 2\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x):$ | $7\left(y_{-} 0\right)$ | $5\left(y_{-} 1\right)$ | $15\left(y_{-} 2\right)$ |

Lagrange's interpolation formula, we have

$$
\begin{align*}
y=f(x) & =\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} y_{1}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} y_{2} \\
f(x) & =\frac{(x-1)(x-2)}{(-1-1)(-1-2)}(7)+\frac{(x+1)(x-2)}{(1+1)(1-2)}(5)+\frac{(x+1)(x-1)}{(2+1)(2-1)}(15) \tag{15}\\
f(x) & =\frac{7}{6}\left[x^{2}-3 x+2\right]-\frac{5}{2}\left[x^{2}-x-2\right]+5\left[x^{2}-1\right] \\
f(x) & =x^{2}\left[\frac{7}{6}-\frac{5}{2}+5\right]+x\left[-\frac{7}{2}+\frac{5}{2}\right]+\left[\frac{7}{3}+5-5\right] \\
f(x) & =\left(\frac{22}{6}\right) x^{2}-x+\left(\frac{7}{3}\right) . \\
f(4) & =\frac{1}{3}\left[11 x^{2}-3 x+7\right] .
\end{align*}
$$

7. Find the missing term in the following table using Lagrange's interpolation.

$x:$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$f(x):$	$\mathbf{1}$	$\mathbf{3}$	9	--	81

Solution :

$x:$	$0\left(x_{0}\right)$	$1\left(x_{1}\right)$	$2,\left(x_{2}\right)$	$4\left(x_{3}\right)$
$f(x):$	$1\left(y_{0}\right)$	$3\left(y_{1}\right)$	$9)\left(y_{2}\right)$	$81\left(y_{3}\right)$

Lagrange's interpolation formula, we have

$$
\begin{align*}
\begin{aligned}
y=f(x) & =\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)} y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)} y_{1} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)} y_{2}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} y_{3} \\
y=f(x) & =\frac{(x-1)(x-2)(x-4)}{(0-1)(0-2)(0-4)}(1)+\frac{(x-0)(x-2)(x-4)}{(1-0)(1-2)(1-4)} \\
& +\frac{(x-0)(x-1)(x-4)}{(2-0)(2-1)(2-4)}(9)+\frac{(x-0)(x-1)(x-2)}{(4-0)(4-1)(4-2)} \\
f(3)= & \frac{(3-1)(3-2)(3-4)}{(0-1)(0-2)(0-4)}(1)+\frac{(3-0)(3-2)(3-4)}{(1-0)(1-2)(1-4)} \\
& +\frac{(3-0)(3-1)(3-4)}{(2-0)(2-1)(2-4)}(9)+\frac{(3-0)(3-1)(3-2)}{(4-0)(4-1)(4-2)}
\end{aligned}
\end{align*}
$$

$$
\begin{aligned}
& f(3)=\frac{(2)(1)(-1)}{(-1)(-2)(-4)}(1)+\frac{(3)(1)(-1)}{(1)(-1)(-3)}(3)+\frac{(3)(2)(-1)}{(2)(1)(-2)}(9)+\frac{(3)(2)(1)}{(4)(3)(2)}(81) \\
& f(3)=-\frac{2}{8}-3+\frac{27}{2}+\frac{81}{4} \\
& f(3)=31
\end{aligned}
$$

DIVIDED DIFFERNCES

1. Using Newton's divided difference formula, find $\boldsymbol{u}(3)$

$$
\text { given } u(1)=-26, u(2)=12, u(4)=256, u(6)=844
$$

Solution :

x	$f(x)$	$\Delta f(x)$	$\Delta^{2} f(x)$	$\Delta^{3} f(x)$
1	-26	$\frac{12+26}{2-1}=38$	$\frac{122-38}{4-1}$	
2	12	$\frac{256-12}{4-2}=122$	$\frac{29}{}$	
4	256	$\frac{844-256}{6-4}=294$	$\frac{294-122}{6-2}=43$	
6	844			

By Newton's divided difference interpolation formula
$f(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f\left(x_{0}, x_{1}\right)+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left(x_{0}, x_{1}, x_{2}\right)+\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ Here $x_{0}=1, x_{1}=2, x_{2}=4, x_{3}=6$
And $f\left(x_{0}\right)=-26, f\left(x_{0}, x_{1}\right)=38, f\left(x_{0}, x_{1}, x_{2}\right)=28, f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=3$

$$
\begin{aligned}
\therefore & f(x)=-26+(x-1) 38+(x-1)(x-2) 28+(x-1)(x-2)(x-4) 3 \\
\therefore & f(3)=-26+(3-1) 38+(3-1)(3-2) 28+(3-1)(3-2)(3-4) 3 \\
& f(3)=-26+(2) 38+(2)(1) 28+(2)(1)(-1) 3 \\
& f(3)=100
\end{aligned}
$$

2. Find $\boldsymbol{f}(\boldsymbol{x})$ as a polynomial in \boldsymbol{x} for the following data by Newton's divided difference formula

$x:$	-4	-1	0	2	5
$f(x):$	1245	33	5	9	1335

Solution :

x	$f(x)$	$\Delta f(x)$	$\Delta^{2} f(x)$	$\Delta^{3} f(x)$	$\Delta^{4} f(x)$

-4	1245	$\frac{33-1245}{-1-(-4)}=-404$	$\frac{-28-(-404)}{0-(-4)}=94$	
-1	33	$\frac{5-33}{0-(-1)}=-28$	$\frac{2-(-28)}{2-(-1)}=10$	$\frac{10-94}{2-(-4)}=-14$
0	5	$\frac{9-5}{2-0}=2$	$\frac{442-2}{5-0}=88$	$\frac{88-10}{5-0}=13$
2	9	$\frac{1335-9}{5-2}=442$		$\frac{13+14}{5-(-4)}=3$
5	1335			

By Newton's divided difference interpolation formula

$$
\begin{aligned}
f(x)=f\left(x_{0}\right)+ & \left(x-x_{0}\right) f\left(x_{0}, x_{1}\right)+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left(x_{0}, x_{1}, x_{2}\right)+\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) f\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \\
& +\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) f\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{aligned}
$$

Here $x_{0}=-4, x_{1}=-1, x_{2}=0, x_{3}=2, x_{4}=5$, and

$$
\begin{aligned}
& f\left(x_{0}\right)=1245, f\left(x_{0}, x_{1}\right)=-404, f\left(x_{0}, x_{1}, x_{2}\right)=94, f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=-14, f\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)=3 \\
& \therefore \quad f(x)=1245+(x+4)(-404)+(x+4)(x+1)(94)+(x+4)(x+1)(x-0)(-14) \\
& +(x+4)(x+1)(x-0)(x-2)(3) \\
& \begin{aligned}
f(x)=1245 & -404 x-1616+(94)\left[x^{2}+5 x+4\right]-14 x\left[x^{2}+5 x+4\right] \\
& +3 x\left[\left(x^{2}+5 x+4\right)(x-2)\right]
\end{aligned} \\
& +3 x\left[\left(x^{2}+5 x+4\right)(x-2)\right] \\
& f(x)=1245-404 x-1616+94 x^{2}+470 x+376-14 x^{3}-70 x^{2}-56 x \\
& +3 x\left[x^{3}-2 x+5 x^{2}-10 x+4 x-8\right] \\
& f(x)=-14 x^{3}+24 x^{2}+10 x+5+3 x\left[x^{3}+5 x^{2}-8 x-8\right] \\
& f(x)=-14 x^{3}+24 x^{2}+10 x+5+3 x^{4}+15 x^{3}-24 x^{2}-24 x \\
& f(x)=3 x^{4}+x^{3}-14 x+5
\end{aligned}
$$

3. Find $\boldsymbol{f}(8)$ by Newton's divided difference formula for the data,

$x:$	4	5	7	10	11	13
$f(x):$	48	100	294	900	1210	2028

Solution:

x	$f(x)$	$\Delta f(x)$	$\Delta^{2} f(x)$	$\Delta^{3} f(x)$	$\Delta^{4} f(x)$
4	48	$\frac{100-48}{5-4}=52$	$\frac{97-52}{7-4}=15$	$\frac{21-15}{10-4}=1$	
5	100	$\frac{294-100}{5-7}=97$	$\frac{202-97}{10-5}=21$	$\frac{27-21}{11-5}=1$	0
7	294	$\frac{900-294}{10-7}=202$	$\frac{310-202}{11-7}=27$	$\frac{33-27}{13-7}=1$	0

10	900	$\frac{1210-900}{11-10}=310$	$\frac{409-310}{13-10}=33$		
11	1210	$\frac{2028-1210}{13-11}=409$			
13	2028				

By Newton's divided difference interpolation formula

$$
\begin{aligned}
f(x)=f\left(x_{0}\right)+ & \left(x-x_{0}\right) f\left(x_{0}, x_{1}\right)+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left(x_{0}, x_{1}, x_{2}\right)+\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) f\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \\
& +\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) f\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{aligned}
$$

Here $x_{0}=4, x_{1}=5, x_{2}=7, x_{3}=10, x_{4}=11, x_{5}=13$ and
$f\left(x_{0}\right)=48, f\left(x_{0}, x_{1}\right)=52, f\left(x_{0}, x_{1}, x_{2}\right)=15, f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=1, f\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)=0$
$\therefore f(x)=48+(x-4)(52)+(x-4)(x-5)(15)+(x-4)(x-5)(x-7)(1)$
$+(x-4)(x-5)(x-7)(x-11)(0)+0$
$\therefore f(8)=48+(8-4)(52)+(8-4)(8-5)(15)+(8-4)(8-5)(8-7)(1)+0$
$f(8)=48+(4)(52)+(4)(3)(15)+(4)(3)(1)(1)$
$f(8)=448$.
4. Find $\boldsymbol{f}(3)$ by Newton's divided difference formula for the data,

$x:$	0	1	2	4	5
$f(x):$	1	14	15	5	6

Solution:

x	$f(x)$	$\Delta f(x)$	$\Delta^{2} f(x)$	$\Delta^{3} f(x)$	$\Delta^{4} f(x)$
0	1	$\frac{14-1}{1-0}=13$			
1	14	$\frac{15-14}{2-1}=1$	$\frac{1-13}{2-0}=-6$	$\frac{-5-1}{4-1}=-2$	$\frac{2+6}{4-0}=1$
2	15	$\frac{5-15}{4-2}=-5$	$\frac{1+5}{5-2}=2$	$\frac{1-1}{5-1}=0$	
4	5				
5	6				

By Newton's divided difference interpolation formula

$$
\begin{aligned}
f(x)=f\left(x_{0}\right)+ & \left(x-x_{0}\right) f\left(x_{0}, x_{1}\right)+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left(x_{0}, x_{1}, x_{2}\right)+\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) f\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \\
& +\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) f\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{aligned}
$$

Here $x_{0}=0, x_{1}=1, x_{2}=2, x_{3}=4, x_{4}=5$ and

$$
f\left(x_{0}\right)=1, f\left(x_{0}, x_{1}\right)=13, f\left(x_{0}, x_{1}, x_{2}\right)=-6, f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=1, f\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)=0
$$

$$
\therefore \quad f(x)=1+(x-0)(13)+(x-0)(x-1)(-6)+(x-0)(x-1)(x-2)(1)
$$

$$
+(x-0)(x-1)(x-2)(x-4)(0)+0
$$

$$
\therefore \quad f(3)=1+(3-0)(13)+(3-0)(3-1)(-6)+(3-0)(3-1)(3-2)(1)+0
$$

$$
f(3)=1+(3)(13)+(3)(2)(-6)+(3)(2)(1)(1)
$$

$$
f(3)=10
$$

5. Using Newton's divided difference formula, find the missing term in the following data

$x:$	1	2	4	5	6
$f(x):$	14	15	5	--	9

Solution:

x	$f(x)$	$\Delta f(x)$	$\Delta^{2} f(x)$	
1	14	$\frac{15-14}{2-1}=1$	$\frac{-5-1}{4-1}=-2$	$\Delta^{3} f(x)$
2	15	$\frac{5-15}{4-2}=-5$	$\frac{2+5}{6}=1.75$	
4	5	$\frac{9-5}{6-4}=2$		
6	9			

By Newton's divided difference interpolation formula
$f(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f\left(x_{0}, x_{1}\right)+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left(x_{0}, x_{1}, x_{2}\right)+\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$
Here $x_{0}=1, x_{1}=2, x_{2}=4, x_{3}=6$
And $f\left(x_{0}\right)=14, f\left(x_{0}, x_{1}\right)=1, f\left(x_{0}, x_{1}, x_{2}\right)=-2, f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=0.75$

NEWTONS FORWARD \& BACKWARD INTERPOLATION FORMULA

$$
\begin{aligned}
& \therefore f(x)=14+(x-1)(1)+(x-1)(x-2)(-2)+(x-1)(x-2)(x-4)(0.75) \\
& \therefore f(5)=14+(5-1)(1)+(5-1)(5-2)(-2)+(5-1)(5-2)(5-4)(0.75) \\
& f(5)=14+(4)(1)+(4)(3)(-2)+(4)(3)(1)(0.75) \\
& f(5)=3 .
\end{aligned}
$$

Newton forward interpolation formula :

$$
\begin{aligned}
y(x)=y\left(x_{0}+p h\right)= & y_{0}+\frac{u}{1!} \Delta y_{0}+\frac{u(u-1)}{2!} \Delta^{2} y_{0}+\frac{u(u-1)(u-2)}{3!} \Delta^{3} y_{0} \\
& +\frac{u(u-1)(u-2)(u-3)}{4!} \Delta^{4} y_{0}+\cdots \ldots \ldots
\end{aligned} \quad \text { where } u=\frac{x-x_{0}}{h}
$$

Newton backward interpolation formula :

$$
\begin{aligned}
y(x)=y\left(x_{n}+p h\right)= & y_{n}+\frac{V}{1!} \nabla y_{n}+\frac{V(V+1)}{2!} \nabla^{2} y_{n}+\frac{V(V+1)(V+2)}{3!} \nabla^{3} y_{n} \\
& +\frac{V(V+1)(V+2)(V+3)}{4!} \nabla^{4} y_{n}+\cdots \ldots \cdots \quad \text { where } u=\frac{x-x_{n}}{h}
\end{aligned}
$$

1. Using Newton's forward interpolation formula, find a polynomial $\boldsymbol{f}(\boldsymbol{x})$ satisfying the following data. Hence evaluate y at $x=5$.

$\mathrm{x}:$	4	6	8	10
$y:$	1	3	8	10

Solution : We form the difference table

x	y	Δy	$\Delta^{2} y$
$4\left(x_{0}\right)$	$1\left(y_{0}\right)$	$3-1=\mathbf{2}\left(\Delta y_{0}\right)$	$\Delta^{3} y$
$6\left(x_{1}\right)$	$3\left(y_{1}\right)$		$5-2=\mathbf{3}\left(\Delta^{2} y_{0}\right)$
$8\left(x_{2}\right)$	$8\left(y_{2}\right)$	$8-3=5\left(\Delta y_{1}\right)$	
$10\left(x_{3}\right)$	$10\left(y_{3}\right)$	$10-8=2\left(\Delta y_{2}\right)$	$-6\left(\Delta^{3} y_{0}\right)$

There are only four data are given. Hence the polynomial is of order 3

$$
y(x)=y_{0}+\frac{u}{1!} \Delta y_{0}+\frac{u(u-1)}{2!} \Delta^{2} y_{0}+\frac{u(u-1)(u-2)}{3!} \Delta^{3} y_{0}+\frac{u(u-1)(u-2)(u-3)}{4!} \Delta^{4} y_{0}+\cdots
$$

where $u=\frac{x-x_{0}}{h}$. Here $x_{0}=4 \& h=6-4=2$ (or) $\quad 10-8=2$
Let $u=\left(\frac{x-4}{2}\right)$

$$
\begin{aligned}
y(x) & =1+\frac{\left(\frac{x-4}{2}\right)}{1!}(2)+\frac{\left(\frac{x-4}{2}\right)\left[\left(\frac{x-4}{2}\right)-1\right]}{2!}(3)+\frac{\left(\frac{x-4}{2}\right)\left[\left(\frac{x-4}{2}\right)-1\right]\left[\left(\frac{x-4}{2}\right)-2\right]}{3!}(-6) \\
& =1+\frac{\left(\frac{x-4}{2}\right)}{1}(2)+\frac{\left(\frac{x-4}{2}\right)\left(\frac{x-6}{2}\right)}{2}(3)+\frac{\left(\frac{x-4}{2}\right)\left(\frac{x-6}{2}\right)\left(\frac{x-8}{2}\right)}{6}(-6)
\end{aligned}
$$

$$
\begin{aligned}
& =1+\frac{x-4}{2}(2)+\left(\frac{3}{2}\right)\left(\frac{x-4}{2}\right)\left(\frac{x-6}{2}\right)+\left(-\frac{6}{6}\right)\left(\frac{x-4}{2}\right)\left(\frac{x-6}{2}\right)\left(\frac{x-8}{2}\right) \\
& =1+x-4+\left(\frac{3}{2}\right)\left(\frac{1}{4}\right)(x-4)(x-6)+(-1)\left(\frac{1}{8}\right)(x-4)(x-6)(x-8) \\
& =x-3+\left(\frac{3}{8}\right)\left(x^{2}-4 x-6 x+24\right)+\left(\frac{-1}{8}\right)\left(x^{2}-4 x-6 x+24\right)(x-8) \\
& =x-3+\left(\frac{3}{8}\right)\left(x^{2}-10 x+24\right)+\left(\frac{-1}{8}\right)\left(x^{2}-10 x+24\right)(x-8) \\
& =x-3+\left(\frac{3}{8}\right)\left(x^{2}-10 x+24\right)+\left(\frac{-1}{8}\right)\left(x^{3}-10 x^{2}+24 x-8 x^{2}+80 x-192\right) \\
& =x-3+\left(\frac{3}{8}\right)\left(x^{2}-10 x+24\right)+\left(\frac{-1}{8}\right)\left(x^{3}-18 x^{2}+104 x-192\right) \\
& =x-3+\left(\frac{1}{8}\right)\left[3\left(x^{2}-10 x+24\right)-\left(x^{3}-18 x^{2}+104 x-192\right)\right] \\
& =x-3+\left(\frac{1}{8}\right)\left[-x^{3}+21 x^{2}-134 x+264\right] \\
& y(x)=\left(\frac{1}{8}\right)\left(-x^{3}+21 x^{2}-126 x+240\right)
\end{aligned}
$$

To find y at $x=5$:

$$
\begin{aligned}
& y(5)=\left(\frac{1}{8}\right)\left[-(5)^{3}+21(5)^{2}-126(5)+240\right] \\
& y(5)=\left(\frac{1}{8}\right)(10)=1.25
\end{aligned}
$$

Verification : $\quad f(6)=\left(\frac{1}{8}\right)\left[-(6)^{3}+21(6)^{2}-126(6)+240\right] \Rightarrow\left(\frac{1}{8}\right)[-216+756-756+240]$

$$
f(5)=\left(\frac{1}{2}\right)[24] \Rightarrow 3
$$

Therefore the polynomial is correct.
2. Using Newton's forward formula, find a polynomial $f(x)$ satisfying the following data. Hence find $f(2)$.

$\mathrm{x}:$	0	5	10	15
$y:$	14	379	1444	3584

Solution: We form the difference table

x	y	Δy	$\Delta^{2} y$	$\Delta^{3} y$
$0\left(x_{0}\right)$	$14\left(y_{0}\right)$			
$5\left(x_{1}\right)$	$379\left(y_{1}\right)$	$379-14=\mathbf{3 6 5}\left(\Delta y_{0}\right)$	$\mathbf{7 0 0}\left(\Delta^{2} y_{0}\right)$	
$10\left(x_{2}\right)$	$1444\left(y_{2}\right)$	$1065\left(\Delta y_{1}\right)$	$1075\left(\Delta^{2} y_{1}\right)$	$\mathbf{3 7 5}\left(\Delta^{3} y_{0}\right)$
$15\left(x_{3}\right)$	$3584\left(y_{3}\right)$	$2140\left(\Delta y_{2}\right)$		

There are only four data are given. Hence the polynomial is of order 3
$y(x)=y\left(x_{0}+p h\right)=y_{0}+\frac{u}{1!} \Delta y_{0}+\frac{u(u-1)}{2!} \Delta^{2} y_{0}+\frac{u(u-1)(u-2)}{3!} \Delta^{3} y_{0}+\frac{u(u-1)(u-2)(u-3)}{4!} \Delta^{4} y_{0}+\cdots \ldots \ldots$
where $u=\frac{x-x_{0}}{h}$. Here $x_{0}=0 \& h=5-0=5$ (or) $\quad 10-5=5$
Let $\quad u=\left(\frac{x-0}{5}\right)=\frac{x}{5}$

$$
\begin{aligned}
\begin{aligned}
y(x)= & 14+\frac{\left(\frac{x}{5}\right)}{1!}(365)+\frac{\left(\frac{x}{5}\right)\left[\left(\frac{x}{5}\right)-1\right]}{2!}(700)+\frac{\left.\left(\frac{x}{5}\right) f\left(\frac{x}{5}\right)-1\right]\left[\left(\frac{x}{5}\right)-2\right]}{3!} \\
& =14+\left(\frac{x}{5}\right)(365)+\frac{\left(\frac{x}{5}\right)\left(\frac{x-5}{5}\right)}{2}(700)+\frac{\left(\frac{x}{5}\right)\left(\frac{x-5}{5}\right)\left(\frac{x-10}{5}\right)}{6}(375) \\
& =14+(x)(73)+\left(\frac{x}{5}\right)\left(\frac{x-5}{5}\right)(350)+\left(\frac{x}{5}\right)\left(\frac{x-5}{5}\right)\left(\frac{x-10}{5}\right)\left(\frac{1}{6}\right) \\
& =14+73 x+\left(\frac{350}{25}\right)[x(x-5)]+\left(\frac{1}{6}\right)\left(\frac{375}{125}\right) x(x-5)(x-10) \\
& =14+73 x+14\left(x^{2}-5 x\right)+\left(\frac{1}{6}\right) 3\left[\left(x^{2}-5 x\right)(x-10)\right] \\
& =14+73 x+14 x^{2}-70 x+\left(\frac{1}{2}\right)\left[\left(x^{3}-5 x^{2}-10 x^{2}+50 x\right)\right] \\
& =\left(\frac{1}{2}\right)\left[2\left(14+73 x+14 x^{2}-70 x\right)+\left[\left(x^{3}-5 x^{2}-10 x^{2}+50 x\right)\right]\right] \\
y(x)= & \left(\frac{1}{2}\right)\left[x^{3}+13 x^{2}+56 x+28\right]
\end{aligned}
\end{aligned}
$$

To find $f(2)$:

$$
\begin{aligned}
& f(2)=\left(\frac{1}{2}\right)\left[(2)^{3}+13(2)^{2}+56(2)+28\right] \\
& f(5)=\left(\frac{1}{2}\right)(200)=100
\end{aligned}
$$

Verification :

$$
\begin{gathered}
f(5)=\left(\frac{1}{2}\right)\left[(5)^{3}+13(5)^{2}+56(5)+28\right] \Rightarrow\left(\frac{1}{2}\right)[125+325+280+28] \\
f(5)=\left(\frac{1}{2}\right)[758] \Rightarrow 379
\end{gathered}
$$

3. A Third degree polynomial passes through the points $(0,-1),(1,1),(2,1) \&,(3,-2)$ using Newton's forward interpolation formula find the polynomial. Hence evaluate the value at 1.5 Solution : Let us form the difference table

There are only four data are given. Hence the polynomial is of order 3

$$
y(x)=y_{0}+\frac{u}{1!} \Delta y_{0}+\frac{u(u-1)}{2!} \Delta^{2} y_{0}+\frac{u(u-1)(u-2)}{3!} \Delta^{3} y_{0}+\frac{u(u-1)(u-2)(u-3)}{4!} \Delta^{4} y_{0}+\cdots \ldots \ldots
$$

where $u=\frac{x-x_{0}}{h}$. Here $x_{0}=0$ \& $h=1-0=1$ (or) $2-1=1$
Let $u=\left(\frac{x-0}{1}\right)=x \Rightarrow u=x$

$$
\begin{aligned}
y(x)= & -1+\frac{(x)}{1!}(2)+\frac{(x)[x-1]}{2!}(-2)+\frac{(x)[x-1][x-2]}{3!}(-1) \\
& =-1+x(2)-(x)[x-1]+\left(\frac{-1}{6}\right)(x)[x-1][x-2] \\
& =-1+2 x-\left[x^{2}-x\right]+\left(\frac{-1}{6}\right)\left[x^{2}-x\right][x-2] \\
& =-x^{2}+x-1+2 x+\left(\frac{-1}{6}\right)\left[x^{3}-x^{2}-2 x^{2}+2 x\right]
\end{aligned}
$$

$$
\begin{aligned}
& =-x^{2}+3 x-1+\left(\frac{-1}{6}\right)\left[x^{3}-3 x^{2}+2 x\right] \\
& =\left(\frac{1}{6}\right)\left[6\left(-x^{2}+3 x-1\right)+(-1)\left[x^{3}-3 x^{2}+2 x\right]\right] \\
& =\left(\frac{1}{6}\right)\left[-6 x^{2}+18 x-6-x^{3}+3 x^{2}-2 x\right] \\
y(x)= & \left(\frac{1}{6}\right)\left[-x^{3}-3 x^{2}+16 x-6\right]
\end{aligned}
$$

To find y at 1.5: $\quad f(1.5)=\left(\frac{1}{6}\right)\left[-(1.5)^{3}-3(1.5)^{2}+16(1.5)-6\right]$

$$
\begin{aligned}
& f(1.5)=\left(\frac{1}{6}\right)[-3.375-6.75+24-6] \\
& f(1.5)=\left(\frac{1}{6}\right)(7.875)=1.3125
\end{aligned}
$$

Verification : $\quad f(2)=\left(\frac{1}{6}\right)\left[-(2)^{3}-3(2)^{2}+16(2)-6\right] \Rightarrow\left(\frac{1}{6}\right)[-8-12+32-6]$

$$
f(2)=\left(\frac{1}{6}\right)[+6]=1
$$

4. Using Newton's forward interpolation formula find the polynomial which takes places the values

$\mathrm{x}:$	0	1	2	3
$y:$	1	20	1	10

Evaluate $\boldsymbol{f}(4)$ using Newton's backward interpolation formula. Is it the same as obtained from the cubic polynomial found above.

Solution : Let us form the difference table

x	y	Δy	$\Delta^{2} y$	$\Delta^{3} y$
$0\left(x_{0}\right)$	$1 \quad\left(y_{0}\right)$	$\left[\nabla y_{1}\right] \quad 1\left(\Delta y_{0}\right)$		
$1\left(x_{1}\right)$	$2 \quad\left(y_{1}\right)$	$\left[\begin{array}{lll} {\left[\nabla y_{2}\right]} & -1 & \left(\Delta y_{1}\right) \end{array}\right.$	$\left[\nabla^{2} y_{2}\right]-2\left(\Delta^{2} y_{0}\right)$	$\left[\begin{array}{lll}{\left[\nabla^{3} y_{3}\right]} & 12 & \left(\Delta^{3} y_{0}\right)\end{array}\right.$
$2\left(x_{2}\right)$	$1\left(y_{2}\right)$	$\left[\nabla y_{3}\right] \quad 9\left(\Delta y_{2}\right)$	$\left[\nabla^{2} y_{3}\right] \quad 10\left(\Delta^{2} y_{1}\right)$	
$3\left(x_{3}\right)$	$10\left(y_{3}\right)$			

There are only four data are given. Hence the polynomial is of order 3
The Newton's forward interpolation formula is

$$
y(x)=y_{0}+\frac{u}{1!} \Delta y_{0}+\frac{u(u-1)}{2!} \Delta^{2} y_{0}+\frac{u(u-1)(u-2)}{3!} \Delta^{3} y_{0}+\frac{u(u-1)(u-2)(u-3)}{4!} \Delta^{4} y_{0}+\cdots
$$

where $u=\frac{x-x_{0}}{h}$. Here $x_{0}=0$ \& $h=1-0=1$ (or) $\quad 2-1=1$
Let $u=\left(\frac{x-0}{1}\right)=x \Rightarrow u=x$
$y(x)=+1+\frac{(x)}{1!}(1)+\frac{(x)[x-1]}{2!}(-2)+\frac{(x)[x-1][x-2]}{3!}(12$
$=1+x-(x)[x-1]+\left(\frac{12}{6}\right)(x)[x-1][x-2]$
$=1+x-\left[x^{2}-x\right]+(2)\left[x^{2}-x\right][x-2]$ $=-x^{2}+x+1+x+(2)\left[x^{3}-x^{2}-2 x^{2}+2 x\right]$ $=-x^{2}+2 x+1+(2)\left[x^{3}-3 x^{2}+2 x\right]$ $=-x^{2}+2 x+1+2 x^{3}-6 x^{2}+4 x$
$=2 x^{3}-7 x^{2}+6 x+1$

$$
y(x)=2 x^{3}-7 x^{2}+6 x+1
$$

$$
y(x)=y\left(x_{n}+p h\right)=y_{n}+\frac{V}{1!} \nabla y_{n}+\frac{V(V+1)}{2!} \nabla^{2} y_{n}+\frac{V(V+1)(V+2)}{3!} \nabla^{3} y_{n}+\cdots \ldots \ldots
$$

where $u=\frac{x-x_{n}}{h}$. Here $x_{3}=3 \& h=1-0=1$ (or) $2-1=1$
Let $u=\left(\frac{x-3}{1}\right)=x-3 \Rightarrow u=(x-3)$

$$
\begin{gathered}
y(x)=10+\frac{(x-3)}{1!}(9)+\frac{(x-3)[(x-3)+1]}{2!}(10)+\frac{(x-3)[(x-3)+1][(x-3)+2]}{3!} \\
=10+9(x-3)+\left(\frac{10}{2}\right)(x-3)(x-2)+\left(\frac{12}{6}\right)(x-3)(x-2)(x-1) \\
=9 x-17+(5)\left(x^{2}-3 x-2 x+6\right)+(2)\left(x^{2}-3 x-2 x+6\right)(x-1) \\
=9 x-17+\left(5 x^{2}-15 x-10 x+30\right)+(2)\left(x^{3}-3 x^{2}-2 x^{2}+6 x-x^{2}+3 x+2 x-6\right) \\
=9 x-17+5 x^{2}-25 x+30+(2)\left(x^{3}-6 x^{2}+11 x-6\right) \\
=9 x-17+5 x^{2}-25 x+30+2 x^{3}-12 x^{2}+22 x-12 \\
y(x)=2 x^{3}-7 x^{2}+6 x+1
\end{gathered}
$$

To find $y(4)$:

$$
f(4)=2(4)^{3}-7(4)^{2}+6(4)+1
$$

$$
f(4)=41
$$

Therefore the cubic polynomial in both cases are correct.
5. Using Newton's backward formula find the interpolating polynomial of degree 3 for the data.

$$
f(-0.75)=-0.07181250, f(-0.5)=-0.024750, f(-0.25)=0.33493750, f(0)=1.10100
$$

Hence find $f\left(\frac{-1}{3}\right)$.
Solution: Since $f(x)=y$. Let us form the difference table

x	y	∇y	$\nabla^{2} y$	$\nabla^{3} y$

$-0.75\left(x_{0}\right)$	$-0.07181250\left(y_{0}\right)$			
		$\left[\begin{array}{cc} \\ \nabla\end{array} y_{1}\right] 0.0470625$		
$-0.5\left(x_{1}\right)$	$-0.024750 \quad\left(y_{1}\right)$		$\left[\nabla^{2} y_{2}\right] 0.312625$	
		$\left[\begin{array}{lll}{\left[y_{2}\right]} & 0.3596875\end{array}\right.$		$\left[\nabla^{3} y_{3}\right] 0.09375$
$-0.25\left(x_{2}\right)$	0.33493750 (y_{2})		$\left[\nabla^{2} y_{3}\right] 0.400375$	
		$\left[\nabla y_{3}\right] \quad 0.7660625$		
$0\left(x_{3}\right)$	$1.10100 \quad\left(y_{3}\right)$			

There are only four data are given. Hence the polynomial is of order 3 The Newton's backward interpolation formula is

$$
y(x)=y\left(x_{n}+p h\right)=y_{n}+\frac{V}{1!} \nabla y_{n}+\frac{V(V+1)}{2!} \nabla^{2} y_{n}+\frac{V(V+1)(V+2)}{3!} \nabla^{3} y_{n}+\cdots \ldots \ldots
$$

where $u=\frac{x-x_{n}}{h}$. Here $x_{3}=0 \& h=-0.50-(-0.75)=+0.25$
Let $u=\left(\frac{x-0}{0.25}\right)=\frac{x}{0.25} \Rightarrow u=\frac{x}{0.25}$

$$
\begin{gathered}
y(x)=1.10100+\frac{\left(\frac{x}{0.25}\right)}{1!}(0.7660625)+\frac{\left(\frac{x}{0.25}\right)\left[\left(\frac{x}{0.25}\right)+1\right]}{2!}(0.406375) \\
\\
+\frac{\left(\frac{x}{0.25}\right)\left[\left(\frac{x}{0.25}\right)+1\right]\left[\left(\frac{x}{0.25}\right)+2\right]}{3!}(0.09375) \\
=1.10100+\left(\frac{x}{0.25}\right)(0.7660625)+\left(\frac{x}{0.25}\right)\left(\frac{x+0.25}{0.25}\right)\left(\frac{0.406375}{2}\right)+\left(\frac{x}{0.25}\right)\left(\frac{x+0.25}{0.25}\right)\left(\frac{x+0.50}{0.25}\right)\left(\frac{0.09375}{6}\right) \\
=1.10100+x\left(\frac{0.7660625}{0.25}\right)+x(x+0.25)\left(\frac{0.406375}{2(0.25)(0.25)}\right)+x(x+0.25)(x+0.50)\left(\frac{0.09375}{2(0.25)(0.25)(0.50)}\right) \\
=1.10100+x\left(\frac{0.7660625}{0.25}\right)+\left(x^{2}+0.25 x\right)\left(\frac{0.406375}{2(0.25)(0.25)}\right)+\left(x^{2}+0.25 x\right)(x+0.50)\left(\frac{0.09375}{2(0.25)(0.25)(0.50)}\right) \\
=1.10100+x\left(\frac{0.7660625}{0.25}\right)+\left(x^{2}+0.25 x\right)\left(\frac{0.406375}{2(0.25)(0.25)}\right) \\
\\
\\
+\left(x^{3}+0.25 x^{2}+0.50 x^{2}+0.125 x\right)\left(\frac{0.09375}{2(0.25)(0.25)(0.50)}\right)
\end{gathered}
$$

To find $y(4)$:

$$
\begin{gathered}
f(4)=2(4)^{3}-7(4)^{2}+6(4)+1 \\
f(4)=41
\end{gathered}
$$

Verification: $\quad f(2)=2(2)^{3}-7(2)^{2}+6(2)+1 \Rightarrow=16-28+12+1$

$$
f(2)=+1
$$

Therefore the polynomial is correct.
6. From the following data, find the number of students whose weight is between 60 to 70 .

weight in Lbs:	$0-40$	$40-60$	$60-80$	$80-100$	$100-120$
No.of Students	250	120	100	70	50

Solution: We form the difference table

Now let us calculate the no. of students whose
The Newton's forward formula is
$y(x)=y\left(x_{0}+p h\right)=y_{0}+\frac{u}{1!} \Delta y_{0}+\frac{u(u-1)}{2!} \Delta^{2} y_{0}+\frac{u(u-1)(u-2)}{3!} \Delta^{3} y_{0}+\frac{u(u-1)(u-2)(u-3)}{4!} \Delta^{4} y_{0}+\cdots \ldots \ldots$
where $u=\frac{x-x_{0}}{h}$. Here $x_{0}=40 \& h=60-40=20$ (or) $80-60=20$
Let $u=\left(\frac{70-40}{20}\right)=\frac{30}{20}=1.5$ Since $x=70$

$$
\begin{aligned}
y(70)=250 & +\frac{(1.5)}{1!}(250)+\frac{(1.5)[1.5-1]}{2!}(-20)+\frac{(1.5)[1.5-1][1.5-2]}{3!}(-10) \\
& +\frac{(1.5)[1.5-1][1.5-2][1.5-3]}{4!}(-20)+
\end{aligned}
$$

$$
=250+(1.5)(250)+(1.5)[0.5]\left(-\frac{20}{2}\right)+(1.5)[0.5][-0.5]\left(-\frac{10}{6}\right)+(1.5)[0.5][-0.5][-1.5]\left(-\frac{20}{24}\right)+
$$

$$
=250+180-7.5+0.625+0.46875
$$

$$
y(70)=423.59=424(A p p)
$$

7. The following data are taken from the steam table.

Temp ${ }^{0} \mathrm{C}$	140	150	160	170	180
Pressure ${ }^{\mathrm{kgf}} / \mathrm{cm}^{2}$	3.685	4.854	6.302	8.076	10.225

Find the pressure at temperature $\mathbf{t}=142^{\mathbf{0}} \& t=175^{\circ}$.

Solution: We form the difference table

t	p	Δp	$\Delta^{2} p$	$\Delta^{3} p$	$\Delta^{4} p$
140	$3.685\left(y_{0}\right)$				
		$1.169\left(\Delta y_{0}\right)$			
150	$4.854\left(y_{1}\right)$		$0.279\left(\Delta^{2} y_{0}\right)$		
		$1.448\left(\Delta y_{1}\right)$		$0.047\left(\Delta^{3} y_{0}\right)$	
160	$6.302\left(y_{2}\right)$		$0.326\left(\Delta^{2} y_{1}\right)$	\cdots	$0.002\left(\Delta^{4}\right.$
		$1.774\left(\Delta y_{2}\right)$	\cdots	$0.049\left(\Delta^{3} y_{1}\right)$	
170	$8.076\left(y_{3}\right)$		$0.375\left(\Delta^{2} y_{2}\right)$		
		$2.149\left(\Delta y_{3}\right)$			
180	10.225 (y_{4})				

To find the pressure at temperature $t=142^{0}$

Let us use the Newton's forward formula :
$y(x)=y\left(x_{0}+p h\right)=y_{0}+\frac{u}{1!} \Delta y_{0}+\frac{u(u-1)}{2!} \Delta^{2} y_{0}+\frac{u(u-1)(u-2)}{3!} \Delta^{3} y_{0}+\frac{u(u-1)(u-2)(u-3)}{4!} \Delta^{4} y_{0}+\cdots \ldots \ldots$
where $u=\frac{x-x_{0}}{h}$. Here $x_{0}=142 \& h=180-170=10$ (or) $160-150=10$

Let $u=\left(\frac{142-140}{10}\right)=\frac{2}{10}=0.2$ Since $x=142$

$$
\begin{gathered}
p(142)=3.685+\frac{(0.2)}{1!}(1.169)+\frac{(0.2)[0.2-1]}{2!}(0.279)+\frac{(0.2)[0.2-1][0.2-2]}{3!}(0.047) \\
+\frac{(0.2)[0.2-1][0.2-2][0.2-3]}{4!}(0.002)
\end{gathered}
$$

$$
=3.685+(0.2)(1.169)+(0.2)[-0.8]\left(\frac{0.279}{2}\right)+(0.2)[-0.8][-1.8]\left(\frac{0.047}{6}\right)+(0.2)[-0.8][-1.8][-2.8]\left(\frac{0.002}{24}\right)
$$

$$
=3.685+0.2338 \pm 0.02332+0.002256 \pm 0.0000672
$$

$$
p\left(142^{0}\right)=3.898(A p p)
$$

To find the pressure at temperature $t=175^{\circ}$

Let us use the Newton's backward formula :

$$
y(x)=y\left(x_{n}+p h\right)=y_{n}+\frac{V}{1!} \nabla y_{n}+\frac{V(V+1)}{2!} \nabla^{2} y_{n}+\frac{V(V+1)(V+2)}{3!} \nabla^{3} y_{n}+\cdots \ldots \ldots
$$

where $u=\frac{x-x_{n}}{h}$. Here $x_{n}=180 \quad \& \quad h=180-170=10$ (or) $160-150=10$

Let $u=\left(\frac{175-180}{10}\right)=-\frac{5}{10} \Rightarrow u=-0.5$

$$
\begin{aligned}
y(x)=10.225 & +\frac{(-0.5)}{1!}(2.149)+\frac{(-0.5)[(-0.5)+1]}{2!}(0.375)+\frac{(-0.5)[-0.5+1][-0.5+2]}{3!}(0.049) \\
& +\frac{(-0.5)[-0.5+1][-0.5+2][-0.5+3]}{4!}(0.002)
\end{aligned}
$$

$$
y(x)=10.225+(-0.5)(2.149)+(-0.5)[0.5]\left(\frac{0.375}{2}\right)+(-0.5)[0.5][1.5]\left(\frac{0.049}{6}\right)
$$

$$
+(-0.5)[0.5][1.5][2.5]\left(\frac{0.002}{24}\right)
$$

$$
=1.225-1.0745-0.0046875-0.0030625-0.000078125
$$

