UNIT-II

INTERPOLATION & APPROXIMATION

LAGRANGE POLYNAMIAL

1. Find the polynomial f(x) by using Lagrange's formula and hence find f(3) for

<i>x</i> :	0	1	2	5
f(x):	2	3	12	147

Solution :

<i>x</i> :	0 x ₀	1 x ₁	2 x_2	5 x ₃
f(x):	0 y ₀	3 y ₁	12 y ₃	147 y ₄

Lagrange's interpolation formula, we have

$$y = f(x) = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)} y_0 + \frac{(x - x_0)(x - x_2)(x - x_3)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)} y_1$$

$$+ \frac{(x - x_0)(x - x_1)(x - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} y_2 + \frac{(x - x_0)(x - x_1)(x - x_2)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)} y_3$$

$$f(x) = \frac{(x - 1)(x - 2)(x - 5)}{(0 - 1)(0 - 2)(0 - 5)} (2) + \frac{(x - 0)(x - 2)(x - 5)}{(1 - 0)(1 - 2)(1 - 5)} (3)$$

$$+ \frac{(x - 0)(x - 1)(x - 5)}{(2 - 0)(2 - 1)(2 - 5)} (12) + \frac{(x - 0)(x - 1)(x - 2)}{(5 - 0)(5 - 1)(5 - 2)} (147)$$

$$f(x) = \frac{(x - 1)(x - 2)(x - 5)}{-10} (2) + \frac{(x - 0)(x - 2)(x - 5)}{4} (3)$$

$$+ \frac{(x - 0)(x - 1)(x - 5)}{-6} (12) + \frac{(x - 0)(x - 1)(x - 2)}{60} (147)$$

To find f(3):(x = 3):

$$y = f(3) = \frac{(3-1)(3-2)(3-5)}{-10} (2) + \frac{(3-0)(3-2)(3-5)}{4} (3) + \frac{(3-0)(3-1)(3-5)}{-6} (12) + \frac{(3-0)(3-1)(3-2)}{60} (147)$$

 \sim

$$y = f(3) = 0.8 - 4.5 + 24 + 14.7$$

 $y = f(3) = 35.$

2. Using Lagrange's interpolation formula, calculate the profit in the 2000 year from the following data

Year	1997	1999	2001	2002
Profit in Lakhs:	43	65	159	248

Solution : Given the data's are

Year	1997 (<i>x</i> ₀)	1999 (<i>x</i> ₁)	2001 (x_2)	2002 (x_3)
Profit in Lakhs:	43 (y_0)	65 (<i>y</i> ₁)	159 (y ₂)	248 (<i>y</i> ₃)

Lagrange's interpolation formula, we have

$$y = f(x) = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)} y_0 + \frac{(x - x_0)(x - x_2)(x - x_3)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)} y_1 \\ + \frac{(x - x_0)(x - x_1)(x - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} y_2 + \frac{(x - x_0)(x - x_1)(x - x_2)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)} y_3 \\ f(x) = \frac{(x - 1999)(x - 2001)(x - 2002)}{(1997 - 1999)(1997 - 2001)(1997 - 2002)} (43) + \frac{(x - 1997)(x - 2001)(x - 2002)}{(1999 - 1997)(1999 - 2001)(1999 - 2002)} (65) \\ + \frac{(x - 1997)(x - 1999)(x - 2002)}{(2001 - 1999)(2001 - 2002)} (159) + \frac{(x - 1997)(x - 1999)(x - 2001)}{(2002 - 1999)(2002 - 2001)} (43) \\ f(x) = \frac{(x - 1997)(x - 1999)(x - 2002)}{-40} (43) + \frac{(x - 1997)(x - 2001)(x - 2002)}{12} (65) \\ + \frac{(x - 1997)(x - 1999)(x - 2002)}{-8} (159) + \frac{(x - 1997)(x - 1999)(x - 2001)}{15} (43) \\ To find the profit in the year 2000 (f(2000) : (x = 2000) :) \\ y = f(2000) = \frac{(2000 - 1999)(2000 - 2001)(2000 - 2002)}{-40} (43) \\ + \frac{(2000 - 1997)(2000 - 2001)(2000 - 2002)}{-40} (65) \\ + \frac{(2000 - 1997)(2000 - 1999)(2000 - 2001)}{12} (65) \\ + \frac{(2000 - 1997)(2000 - 1999)(2000 - 2001)}{15} (43) \\ y = f(2000) = -2.15 + 32.5 + 119.25 + 49.6 \\ y = f(2000) = 100$$

Hence the profit in the year 2000 is 100.

3. Using Lagrange's formula find y(2) from the following data.

ز	x :	0	1	3	4	5
f ((x):	0	1	81	256	625

Solution :

x:	0 (<i>x</i> ₀)	1 (<i>x</i> ₁)	3 (<i>x</i> ₂)	4 (x_3)	5 (<i>x</i> ₄)
f(x):	0 (y ₀)	1 (<i>y</i> ₁)	81 (<i>y</i> ₂)	256 (<i>y</i> ₃)	625 (<i>y</i> ₄)

Lagrange's interpolation formula, we have

$$y = f(x) = \frac{(x - x_1)(x - x_2)(x - x_3)(x - x_4)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)(x_0 - x_4)} y_0 + \frac{(x - x_0)(x - x_2)(x - x_3)(x - x_4)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)(x_1 - x_4)} y_1$$

$$+ \frac{(x - x_0)(x - x_1)(x - x_3)(x - x_4)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)(x_2 - x_4)} y_2 + \frac{(x - x_0)(x - x_1)(x - x_2)(x - x_4)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)(x_3 - x_4)} y_3 \\ + \frac{(x - x_0)(x - x_1)(x - x_2)(x - x_3)}{(x_4 - x_0)(x_4 - x_1)(x_4 - x_2)(x_4 - x_3)} y_4 \\ f(x) = \frac{(x - 1)(x - 3)(x - 4)(x - 5)}{(0 - 1)(0 - 3)(0 - 4)(0 - 5)} (0) + \frac{(x - 0)(x - 3)(x - 4)(x - 5)}{(1 - 0)(1 - 3)(1 - x_3)(1 - 5)} (1) \\ + \frac{(x - 0)(x - 1)(x - 4)(x - 5)}{(3 - 0)(3 - 1)(3 - 4)(3 - 5)} (81) + \frac{(x - 0)(x - 1)(x - 3)(x - 5)}{(4 - 0)(4 - 1)(4 - 3)(4 - 5)} (256) \\ + \frac{(x - 0)(x - 1)(x - 3)(x - 4)}{(4 - 0)(4 - 1)(4 - 3)(5 - 4)} (625)$$

To fond y(2): (x = 2):

$$y = f(2) = \frac{(2-1)(2-3)(2-4)(2-5)}{-48} (0) + \frac{(2-0)(2-3)(2-4)(2-5)}{-24} (1) + \frac{(2-0)(2-1)(2-4)(2-5)}{12} (81) + \frac{(2-0)(2-1)(2-3)(2-5)}{-12} (256) + \frac{(2-0)(2-1)(2-3)(2-4)}{40} (625)$$

$$y = f(2) = 16.$$

4. Find the third degree polynomial satisfying the following data

<i>x</i> :	1	3	5	7
f(x):	24	120	336	720
Solution	:			

$x:$ 1 (x_0) 3 (x_1)	5 (<i>x</i> ₂)	7 (<i>x</i> ₃)							
$f(x): \ 24 \ (y_0) \ 120 \ (y_1) \ 3$	336 (y ₂)	720 (<i>y</i> ₃)							

Lagrange's interpolation formula, we have

$$y = f(x) = \frac{(x - x_1)(x - x_2)(x - x_3)(x - x_4)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)(x_0 - x_4)} y_0 + \frac{(x - x_0)(x - x_2)(x - x_3)(x - x_4)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)(x_1 - x_4)} y_1$$

$$+ \frac{(x-x_0)(x-x_1)(x-x_3)(x-x_4)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)(x_2-x_4)} y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)(x-x_4)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)(x_3-x_4)} y_3$$

$$f(x) = \frac{(x-3)(x-5)(x-7)}{(1-3)(1-5)(1-7)} (24) + \frac{(x-1)(x-5)(x-7)}{(3-1)(3-5)(3-7)} (120) + \frac{(x-1)(x-3)(x-7)}{(5-1)(5-3)(5-7)} (336)$$

$$+ \frac{(x-1)(x-3)(x-5)}{(7-1)(7-3)(7-5)} (720)$$

$$\begin{split} f(x) &= \frac{-1}{2} \left[(x-3)(x-5)(x-7) \right] + \frac{15}{2} \left[(x-1)(x-5)(x-7) \right] - 21 \left[(x-1)(x-3)(x-7) \right] \\ &\quad + 15 \left[(x-1)(x-3)(x-5) \right] \\ f(x) &= \frac{-1}{2} \left[x^3 - 15 x^2 + 71 x - 105 \right] + \frac{15}{2} \left[x^3 - 13 x^2 + 47 x - 35 \right] - 21 \left[x^3 - 11 x^2 + 31 x - 21 \right] \\ &\quad + 15 \left[x^3 - 9 x^2 + 23 x - 15 \right] \\ f(x) &= x^3 \left[-\frac{1}{2} + \frac{15}{2} - 21 + 15 \right] + x^2 \left[\frac{15}{2} - \frac{195}{2} + 231 - 135 \right] + x \left[-\frac{71}{2} + \frac{705}{2} - 605 + 345 \right] \\ &\quad + \left[\frac{105}{2} - \frac{525}{2} + 441 - 225 \right] \\ f(x) &= x^3 + 6 x^2 + 11 x + 6. \\ f(4) &= (4)^3 + 6 (4)^2 + 11 (4) + 6. \\ f(4) &= 64 + 96 + 44 + 6 \\ f(4) &= 210. \end{split}$$

5. Using Lagrange's interpolation formula find f(4) given that

)(1) = 210.							
Using Lagrange's interpolation formula find $f(4)$ given that $\int \int \int$							
f(0) = 2, f(1) = 3, f(2) = 12, f(15) = 3587.							
Solution : Given the data's are $[f(x_0) = y_0]$							
<i>x</i> :	0 (<i>x</i> ₀)	1 (<i>x</i> ₁)	2 (x_2)	15 (x_3)			
f(x):	2 (y ₀)	3 (y ₁)	12 (y ₂)	3587 (y ₃)			
Lagrange's interpolation formula, we have							

$$y = f(x) = \frac{(x - x_1)(x - x_2)(x - x_3)(x - x_4)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)(x_0 - x_4)} y_0 + \frac{(x - x_0)(x - x_2)(x - x_3)(x - x_4)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)(x_1 - x_4)} y_1 \\ + \frac{(x - x_0)(x - x_1)(x - x_3)(x - x_4)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)(x_2 - x_4)} y_2 + \frac{(x - x_0)(x - x_1)(x - x_2)(x - x_4)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)(x_3 - x_4)} y_3 \\ y = f(4) = \frac{(4 - 1)(4 - 2)(4 - 15)}{(0 - 1)(0 - 2)(0 - 15)} (2) + \frac{(4 - 0)(4 - 2)(4 - 15)}{(1 - 0)(1 - 2)(1 - 15)} (3) \\ + \frac{(4 - 0)(4 - 1)(4 - 15)}{(2 - 0)(2 - 1)(2 - 15)} (12) + \frac{(4 - 0)(4 - 1)(4 - 2)}{(15 - 0)(15 - 1)(15 - 2)} (3587) \\ f(4) = \frac{(3)(2)(-11)}{(-1)(-2)(-15)} (2) + \frac{(4)(2)(-11)}{(1)(-1)(-14)} (3) + \frac{(4)(3)(-11)}{(2)(1)(-13)} (12) + \frac{(4)(3)(2)}{(15)(14)(13)} (3587) \\ f(4) = \frac{132}{-264} + \frac{1584}{-86088}$$

$$f(4) = \frac{132}{30} - \frac{264}{14} + \frac{1584}{26} + \frac{86088}{2730}$$
$$f(4) = 78$$

6. Using Lagrange's polynomial fit a polynomial for the following data

x:	-1	1	2
f(x): 7		5	15
Solution	:		

<i>x</i> :	$-1 (x_0)$	$1 (x_1)$	2 (x_2)
f(x):	7 (y_0)	5 (y_1)	15 (y_2)

Lagrange's interpolation formula, we have

$$y = f(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} y_0 + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} y_1 + \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} y_2$$

$$f(x) = \frac{(x - 1)(x - 2)}{(-1 - 1)(-1 - 2)} (7) + \frac{(x + 1)(x - 2)}{(1 + 1)(1 - 2)} (5) + \frac{(x + 1)(x - 1)}{(2 + 1)(2 - 1)} (15)$$

$$f(x) = \frac{7}{6} [x^2 - 3x + 2] - \frac{5}{2} [x^2 - x - 2] + 5 [x^2 - 1]$$

$$f(x) = x^2 [\frac{7}{6} - \frac{5}{2} + 5] + x [-\frac{7}{2} + \frac{5}{2}] + [\frac{7}{3} + 5 - 5]$$

$$f(x) = (\frac{22}{6}) x^2 - x + (\frac{7}{3}).$$

$$f(4) = \frac{1}{3} [11 x^2 - 3 x + 7].$$

7. Find the missing term in the following table using Lagrange's interpolation.

x:	0	1	2	3	4	
f(x):	1	3	9		81	
Solution	:					N
x:	(x) 0	(₀)	1 (<i>x</i> ₁		2 (x_2)	(x_3)
f(x):	1 ()	<i>v</i> ₀)	3 (y	1) G	9 (y ₂) 81 (y ₃)

Lagrange's interpolation formula, we have

$$y = f(x) = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)} y_0 + \frac{(x - x_0)(x - x_2)(x - x_3)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)} y_1 + \frac{(x - x_0)(x - x_1)(x - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} y_2 + \frac{(x - x_0)(x - x_1)(x - x_2)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)} y_3$$

$$y = f(x) = \frac{(x-1)(x-2)(x-4)}{(0-1)(0-2)(0-4)} (1) + \frac{(x-0)(x-2)(x-4)}{(1-0)(1-2)(1-4)} (3) + \frac{(x-0)(x-1)(x-4)}{(2-0)(2-1)(2-4)} (9) + \frac{(x-0)(x-1)(x-2)}{(4-0)(4-1)(4-2)} (81)$$

$$f(3) = \frac{(3-1)(3-2)(3-4)}{(0-1)(0-2)(0-4)} (1) + \frac{(3-0)(3-2)(3-4)}{(1-0)(1-2)(1-4)} (3) + \frac{(3-0)(3-1)(3-4)}{(2-0)(2-1)(2-4)} (9) + \frac{(3-0)(3-1)(3-2)}{(4-0)(4-1)(4-2)} (81)$$

$$f(3) = \frac{(2)(1)(-1)}{(-1)(-2)(-4)} (1) + \frac{(3)(1)(-1)}{(1)(-1)(-3)} (3) + \frac{(3)(2)(-1)}{(2)(1)(-2)} (9) + \frac{(3)(2)(1)}{(4)(3)(2)} (81)$$

$$f(3) = -\frac{2}{8} - 3 + \frac{27}{2} + \frac{81}{4}$$

$$f(3) = 31.$$

DIVIDED DIFFERNCES

1. Using Newton's divided difference formula, find u(3)given u(1) = -26, u(2) = 12, u(4) = 256, u(6) = 844. Solution :

x	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$
1	-26			
2	12	$\frac{12+26}{2-1} = 38$	$\frac{122 - 38}{4 - 1} = -3.6$	43 - 28 - 2
4	256	$\frac{230}{4-2} = 122$ $\frac{844 - 256}{6-4} = 294$	$\frac{294 - 122}{6 - 2} = 43$	und 1 - 3

$$f(3) = 100$$

2. Find f(x) as a polynomial in x for the following data by Newton's divided difference formula

	x:	-4	-1	0	2	5
	f(x):	1245	33	5	9	1335
أبرياه	on ·					

Solution :

x	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$	$\Delta^4 f(x)$
---	------	---------------	-----------------	-----------------	-----------------

-4	1245	$\frac{33 - 1245}{-1 - (-4)} = -404$	-28 - (-404) = 04		
-1	33	5 – 33	0 - (-4) = 94	10 - 94	
0	5	$\overline{0 - (-1)} = -28$	$\frac{2 - (-28)}{2 - (-1)} = 10$	$\frac{1}{2 - (-4)} = -14$	$\frac{13+14}{5-(-4)} = 3$
2	9	$\frac{9-5}{2-0} = 2$	$\frac{442 - 2}{5 - 0} = 88$	$\frac{88 - 10}{5 - 0} = 13$	
5	1335	$\frac{1335 - 9}{5 - 2} = 442$			

By Newton's divided difference interpolation formula

$$f(x) = f(x_0) + (x - x_0)f(x_0, x_1) + (x - x_0)(x - x_1)f(x_0, x_1, x_2) + (x - x_0)(x - x_1)(x - x_2)f(x_0, x_1, x_2, x_3) + (x - x_0)(x - x_1)(x - x_2)(x - x_3)f(x_0, x_1, x_2, x_3, x_4)$$

Here
$$x_0 = -4$$
, $x_1 = -1$, $x_2 = 0$, $x_3 = 2$, $x_4 = 5$, and
 $f(x_0) = 1245$, $f(x_0, x_1) = -404$, $f(x_0, x_1, x_2) = 94$, $f(x_0, x_1, x_2, x_3) = -14$, $f(x_0, x_1, x_2, x_3, x_4) = 3$
 $\therefore f(x) = 1245 + (x + 4) (-404) + (x + 4)(x + 1) (94) + (x + 4)(x + 1)(x - 0) (-14)$
 $+ (x + 4)(x + 1)(x - 0)(x - 2)(3)$
 $f(x) = 1245 - 404 x - 1616 + (94)[x^2 + 5x + 4] - 14 x [x^2 + 5x + 4]$
 $+ 3 x [(x^2 + 5x + 4)(x - 2)]$
 $f(x) = 1245 - 404 x - 1616 + 94 x^2 + 470 x + 376 - 14 x^3 - 70x^2 - 56 x$
 $+ 3 x [x^3 - 2x + 5x^2 - 10x + 4x - 8]$
 $f(x) = -14 x^3 + 24 x^2 + 10 x + 5 + 3 x [x^3 + 5 x^2 - 8 x - 8]$
 $f(x) = -14 x^3 + 24 x^2 + 10 x + 5 + 3 x^4 + 15 x^3 - 24 x^2 - 24 x$
 $f(x) = 3 x^4 + x^3 - 14 x + 5$

3. Find f(8) by Newton's divided difference formula for the data,

x:	4	5	7	10	11	13
f(x):	48	100	294	900	1210	2028

Solution :

x	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$	$\Delta^4 f(x)$
4	48	$\frac{100 - 48}{5 - 4} = 52$	$\frac{97 - 52}{7 - 4} = 15$	$\frac{21 - 15}{10 - 4} = 1$	
					0
5	100	$\frac{294 - 100}{5 - 7} = 97$	$\frac{202 - 97}{10 - 5} = 21$	$\frac{27 - 21}{11 - 5} = 1$	
					0
7	294	$\frac{900 - 294}{10 - 7} = 202$	$\frac{310 - 202}{11 - 7} = 27$	$\frac{33 - 27}{13 - 7} = 1$	

10	900	$\frac{1210 - 900}{11 - 10} = 310$	$\frac{409 - 310}{13 - 10} = 33$	
11	1210	$\frac{2028 - 1210}{13 - 11} = 409$		
13	2028			

By Newton's divided difference interpolation formula

$$\begin{aligned} f(x) &= f(x_0) + (x - x_0)f(x_0, x_1) + (x - x_0)(x - x_1)f(x_0, x_1, x_2) + (x - x_0)(x - x_1)(x - x_2)f(x_0, x_1, x_2, x_3) \\ &+ (x - x_0)(x - x_1)(x - x_2)(x - x_3)f(x_0, x_1, x_2, x_3, x_4) \end{aligned}$$

Here $x_0 = 4$, $x_1 = 5$, $x_2 = 7$, $x_3 = 10$, $x_4 = 11$, $x_5 = 13$ and

$$f(x_0) = 48$$
, $f(x_0, x_1) = 52$, $f(x_0, x_1, x_2) = 15$, $f(x_0, x_1, x_2, x_3) = 1$, $f(x_0, x_1, x_2, x_3, x_4) = 0$

$$f(x) = 48 + (x - 4) (52) + (x - 4)(x - 5) (15) + (x - 4)(x - 5)(x - 7) (1) + (x - 4)(x - 5)(x - 7)(x - 11)(0) + 0$$

$$f(8) = 48 + (8 - 4) (52) + (8 - 4)(8 - 5) (15) + (8 - 4)(8 - 5)(8 - 7) (1) + 0$$

$$f(8) = 48 + (4) (52) + (4)(3) (15) + (4)(3)(1) (1)$$

$$f(8) = 448.$$

Find f(3) by Newton's divided difference formula for the data, 4.

	x:	0	1	2	4	5
	f(x):	1	14	15	5	6
ıti	on :		(•	

Solu

x	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$	$\Delta^4 f(x)$
0	1				
		$\frac{14 - 1}{1 - 0} = 13$	1 12		
1	14		$\frac{1-15}{2-0} = -6$		
		$\frac{15 - 14}{2 - 1} = 1$	-5 - 1	$\frac{-2+6}{4-0} = 1$	1 – 1
2	15	5 15	$\frac{-3-1}{4-1} = -2$	2 1 2	$\frac{1-1}{5-0} = 0$
		$\frac{3-13}{4-2} = -5$	1 + 5	$\frac{2+2}{5-1} = 1$	
4	5	6 5	$\frac{1+3}{5-2} = 2$		
		$\frac{6-5}{5-4} = 1$			
5	6				

By Newton's divided difference interpolation formula

$$f(x) = f(x_0) + (x - x_0)f(x_0, x_1) + (x - x_0)(x - x_1)f(x_0, x_1, x_2) + (x - x_0)(x - x_1)(x - x_2)f(x_0, x_1, x_2, x_3) + (x - x_0)(x - x_1)(x - x_2)(x - x_3)f(x_0, x_1, x_2, x_3, x_4)$$

Here $x_0 = 0$, $x_1 = 1$, $x_2 = 2$, $x_3 = 4$, $x_4 = 5$ and $f(x_0) = 1$, $f(x_0, x_1) = 13$, $f(x_0, x_1, x_2) = -6$, $f(x_0, x_1, x_2, x_3) = 1$, $f(x_0, x_1, x_2, x_3, x_4) = 0$ $\therefore f(x) = 1 + (x - 0)(13) + (x - 0)(x - 1)(-6) + (x - 0)(x - 1)(x - 2)(1) + (x - 0)(x - 1)(x - 2)(x - 4)(0) + 0$ $\therefore f(3) = 1 + (3 - 0)(13) + (3 - 0)(3 - 1)(-6) + (3 - 0)(3 - 1)(3 - 2)(1) + 0$ f(3) = 1 + (3)(13) + (3)(2)(-6) + (3)(2)(1)(1)f(3) = 10

5. Using Newton's divided difference formula, find the missing term in the following data

	<i>x</i> :	1	2	4	5	6	
	f(x):	14	15	5		9	
Soluti	on :						on
	x	f(x)	Δf	(x)	Δ^2	f(x)	$\Delta^3 f(x)$
	1	14	$\frac{15-1}{2-1}$	$\frac{14}{1} = 1$	-5 -		h
	2	15	$\frac{5-15}{4-2}$	5 - = −5	4 - 1		$\frac{1.75+2}{6-1} = 0.75$
	4	5	9 - 5 6 - 4	$\frac{5}{1} = 2$	$\frac{1}{6} - 2$	5 1.75	
	6	9	(VIC			

By Newton's divided difference interpolation formula

$$f(x) = f(x_0) + (x - x_0)f(x_0, x_1) + (x - x_0)(x - x_1)f(x_0, x_1, x_2) + (x - x_0)(x - x_1)(x - x_2)f(x_0, x_1, x_2, x_3)$$

Here $x_0 = 1$, $x_1 = 2$, $x_2 = 4$, $x_3 = 6$

And
$$f(x_0) = 14$$
, $f(x_0, x_1) = 1$, $f(x_0, x_1, x_2) = -2$, $f(x_0, x_1, x_2, x_3) = 0.75$

$$\therefore \quad f(x) = 14 + (x-1)(1) + (x-1)(x-2)(-2) + (x-1)(x-2)(x-4) \quad (0.75)$$

$$\therefore \quad f(5) = 14 + (5-1)(1) + (5-1)(5-2)(-2) + (5-1)(5-2)(5-4)(0.75)$$

$$f(5) = 14 + (4)(1) + (4)(3)(-2) + (4)(3)(1)(0.75)$$

f(5) = 3.

NEWTONS FORWARD & BACKWARD INTERPOLATION FORMULA

Newton forward interpolation formula :

$$y(x) = y(x_0 + ph) = y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u-1)}{2!} \Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!} \Delta^3 y_0 + \frac{u(u-1)(u-2)(u-3)}{4!} \Delta^4 y_0 + \dots \dots \qquad \text{where } u = \frac{x - x_0}{h}$$

Newton backward interpolation formula :

$$y(x) = y(x_n + ph) = y_n + \frac{V}{1!} \nabla y_n + \frac{V(V+1)}{2!} \nabla^2 y_n + \frac{V(V+1)(V+2)}{3!} \nabla^3 y_n + \frac{V(V+1)(V+2)(V+3)}{4!} \nabla^4 y_n + \dots \dots \qquad \text{where } u = \frac{x - x_n}{h}$$

1. Using Newton's forward interpolation formula, find a polynomial f(x) satisfying the following data. Hence

evaluate
$$y at x = 5$$
.

x :	4	6	8	10
y :	1	3	8	10

Solution : We form the difference table

lution : We form	the difference tal	ble	[when	
х	У	Δy	$\Delta^2 y$	$\Delta^3 y$
4 (x_0)	1 (y ₀)	$3 - 1 = 2 (\Delta y_0)$		
6 (<i>x</i> ₁)	3 (y ₁)	$8-3=5(\Delta y_1)$	$5-2=3 \ (\Delta^2 y_0)$	-6 (Δ ³ y ₀)
8 (x ₂)	8 (y ₂)		$2-5=-3 (\Delta^2 y_1)$	
10 (<i>x</i> ₃)	10 (y ₃)	$10 - 8 = 2 (\Delta y_2)$		

There are only four data are given. Hence the polynomial is of order 3

$$y(x) = y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u-1)}{2!} \Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!} \Delta^3 y_0 + \frac{u(u-1)(u-2)(u-3)}{4!} \Delta^4 y_0 + \cdots$$

where $u = \frac{x - x_0}{h}$. Here $x_0 = 4$ & h = 6 - 4 = 2 (or) 10 - 8 = 2

Let $u = \left(\frac{x-4}{2}\right)$

$$y(x) = 1 + \frac{\left(\frac{x-4}{2}\right)}{1!}(2) + \frac{\left(\frac{x-4}{2}\right)\left[\left(\frac{x-4}{2}\right)-1\right]}{2!}(3) + \frac{\left(\frac{x-4}{2}\right)\left[\left(\frac{x-4}{2}\right)-1\right]\left[\left(\frac{x-4}{2}\right)-2\right]}{3!}(-6)$$
$$= 1 + \frac{\left(\frac{x-4}{2}\right)}{1}(2) + \frac{\left(\frac{x-4}{2}\right)\left(\frac{x-6}{2}\right)}{2}(3) + \frac{\left(\frac{x-4}{2}\right)\left(\frac{x-6}{2}\right)\left(\frac{x-8}{2}\right)}{6}(-6)$$

$$= 1 + \frac{x - 4}{2} (2) + \left(\frac{3}{2}\right) \left(\frac{x - 4}{2}\right) \left(\frac{x - 6}{2}\right) + \left(-\frac{6}{6}\right) \left(\frac{x - 4}{2}\right) \left(\frac{x - 6}{2}\right) \left(\frac{x - 8}{2}\right)$$

$$= 1 + x - 4 + \left(\frac{3}{2}\right) \left(\frac{1}{4}\right) (x - 4)(x - 6) + (-1) \left(\frac{1}{8}\right) (x - 4)(x - 6)(x - 8)$$

$$= x - 3 + \left(\frac{3}{8}\right) (x^2 - 4x - 6x + 24) + \left(\frac{-1}{8}\right) (x^2 - 4x - 6x + 24)(x - 8)$$

$$= x - 3 + \left(\frac{3}{8}\right) (x^2 - 10x + 24) + \left(\frac{-1}{8}\right) (x^2 - 10x + 24)(x - 8)$$

$$= x - 3 + \left(\frac{3}{8}\right) (x^2 - 10x + 24) + \left(\frac{-1}{8}\right) (x^3 - 10x^2 + 24x - 8x^2 + 80x - 192)$$

$$= x - 3 + \left(\frac{3}{8}\right) (x^2 - 10x + 24) + \left(\frac{-1}{8}\right) (x^3 - 18x^2 + 104x - 192)$$

$$= x - 3 + \left(\frac{1}{8}\right) [3 (x^2 - 10x + 24) - (x^3 - 18x^2 + 104x - 192)]$$

$$= x - 3 + \left(\frac{1}{8}\right) [-x^3 + 21x^2 - 134x + 264]$$

$$y(x) = \left(\frac{1}{8}\right) (-x^3 + 21x^2 - 126x + 240)$$

To find y at x = 5:

$$y(5) = \left(\frac{1}{8}\right) [-(5)^3 + 21(5)^2 - 126(5) + 240]$$
$$y(5) = \left(\frac{1}{8}\right) (10) = 1.25$$

Verification :

$$f(6) = \left(\frac{1}{8}\right) \left[-(6)^3 + 21(6)^2 - 126(6) + 240\right] \implies \left(\frac{1}{8}\right) \left[-216 + 756 - 756 + 240\right]$$

$$f(5) = \left(\frac{1}{2}\right)[24] \implies 3$$

Therefore the polynomial is correct.

2. Using Newton's forward formula, find a polynomial f(x) satisfying the following data. Hence find f(2).

x :	0	5	10	15
y :	14	379	1444	3584

Solution : We form the difference table

x	У	Δy	$\Delta^2 y$	$\Delta^3 y$
$0 (x_0)$	14 (y ₀)			
		$379 - 14 = 365 (\Delta y_0)$		
5 (x_1)	379 (y ₁)		700 $(\Delta^2 y_0)$	
		1065 (Δy ₁)		375 $(\Delta^3 y_0)$
10 (<i>x</i> ₂)	1444 (y ₂)		1075 ($\Delta^2 y_1$)	
		2140 (Δy ₂)		
15 (x_3)	3584 (y ₃)			

There are only four data are given. Hence the polynomial is of order 3

$$y(x) = y(x_{0} + ph) = y_{0} + \frac{u}{1!} \Delta y_{0} + \frac{u(u-1)}{2!} \Delta^{2} y_{0} + \frac{u(u-1)(u-2)}{3!} \Delta^{3} y_{0} + \frac{u(u-1)(u-2)(u-3)}{4!} \Delta^{4} y_{0} + \cdots \dots \cdots$$
where $u = \frac{x - x_{0}}{h}$. Here $x_{0} = 0$ & $h = 5 - 0 = 5$ (or) $10 - 5 = 5$
Let $u = \left(\frac{x-d}{5}\right) = \frac{x}{5}$

$$y(x) = 14 + \left(\frac{x}{5}\right) (365) + \left(\frac{x}{5}\right) \left[\left(\frac{x}{5}\right) - 1\right] (700) + \left(\frac{x}{5}\right) \left[\left(\frac{x}{5}\right) - 1\right] \left[\left(\frac{x}{5}\right) - 2\right] (375)$$

$$= 14 + \left(\frac{x}{5}\right) (365) + \left(\frac{x}{5}\right) \left(\frac{x-5}{2}\right) (700) + \left(\frac{x}{5}\right) \left(\frac{x-5}{5}\right) \left(\frac{x-10}{5}\right) (375)$$

$$= 14 + (x) (73) + \left(\frac{x}{5}\right) \left(\frac{x-5}{5}\right) (350) + \left(\frac{x}{5}\right) \left(\frac{x-5}{5}\right) \left(\frac{x-10}{5}\right) \left(\frac{1}{6}\right) (375)$$

$$= 14 + 73 x + \left(\frac{350}{25}\right) [x(x-5)] + \left(\frac{1}{6}\right) \left(\frac{375}{125}\right) x(x-5)(x-10)$$

$$= 14 + 73 x + 14 (x^{2} - 5x) + \left(\frac{1}{6}\right) 3 [(x^{2} - 5x)(x-10)]$$

$$= 14 + 73 x + 14 x^{2} - 70 x + \left(\frac{1}{2}\right) [(x^{3} - 5x^{2} - 10x^{2} + 50 x)]$$

$$= \left(\frac{1}{2}\right) [2(14 + 73 x + 14 x^{2} - 70 x) + [(x^{3} - 5x^{2} - 10x^{2} + 50 x)]$$

To find f(2):

$$f(2) = \left(\frac{1}{2}\right) [(2)^3 + 13(2)^2 + 56(2) + 28]$$
$$f(5) = \left(\frac{1}{2}\right) (200) = 100$$

Verification :

$$f(5) = \left(\frac{1}{2}\right) [(5)^3 + 13(5)^2 + 56(5) + 28] \implies \left(\frac{1}{2}\right) [125 + 325 + 280 + 28]$$
$$f(5) = \left(\frac{1}{2}\right) [758] \implies 379$$

A Third degree polynomial passes through the points (0,-1), (1,1), (2,1,) & (3,-2) using Newton's forward interpolation formula find the polynomial. Hence evaluate the value at 1.5 Solution : Let us form the difference table

There are only four data are given. Hence the polynomial is of order 3

$$y(x) = y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u-1)}{2!} \Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!} \Delta^3 y_0 + \frac{u(u-1)(u-2)(u-3)}{4!} \Delta^4 y_0 + \dots \dots$$

where $u = \frac{x - x_0}{h}$. Here $x_0 = 0$ & h = 1 - 0 = 1 (or) 2 - 1 = 1

Let
$$u = \left(\frac{x-0}{1}\right) = x \implies u = x$$

 $y(x) = -1 + \frac{(x)}{1!}(2) + \frac{(x)[x-1]}{2!}(-2) + \frac{(x)[x-1][x-2]}{3!}(-1)$
 $= -1 + x(2) - (x)[x-1] + \left(\frac{-1}{6}\right)(x)[x-1][x-2]$
 $= -1 + 2x - [x^2 - x] + \left(\frac{-1}{6}\right)[x^2 - x][x-2]$
 $= -x^2 + x - 1 + 2x + \left(\frac{-1}{6}\right)[x^3 - x^2 - 2x^2 + 2x]$

$$= -x^{2} + 3x - 1 + \left(\frac{-1}{6}\right)[x^{3} - 3x^{2} + 2x]$$

$$= \left(\frac{1}{6}\right)\left[6(-x^{2} + 3x - 1) + (-1)[x^{3} - 3x^{2} + 2x]\right]$$

$$= \left(\frac{1}{6}\right)[-6x^{2} + 18x - 6 - x^{3} + 3x^{2} - 2x]$$

$$y(x) = \left(\frac{1}{6}\right)[-x^{3} - 3x^{2} + 16x - 6]$$

To find y at 1.5: $f(1.5) = \left(\frac{1}{6}\right) [-(1.5)^3 - 3(1.5)^2 + 16(1.5) - 6]$ $f(1.5) = \left(\frac{1}{6}\right) [-3.375 - 6.75 + 24 - 6]$ $f(1.5) = \left(\frac{1}{6}\right) (7.875) = 1.3125$ Verification: $f(2) = \left(\frac{1}{6}\right) [-(2)^3 - 3(2)^2 + 16(2) - 6] \implies \left(\frac{1}{6}\right) [-8 - 12 + 32 - 6]$ $f(2) = \left(\frac{1}{6}\right) [+6] = 1$

4. Using Newton's forward interpolation formula find the polynomial which takes places the values

х:	0	1	2	3
y :	1	2		10

Evaluate f(4) using Newton's backward interpolation formula. Is it the same as obtained from the cubic

polynomial found above.

Solution : Let us form the difference table

x	у	Δy	$\Delta^2 y$	$\Delta^3 y$
$0(x_0)$	$1 (y_0)$			
		$[\nabla y_1] 1 (\Delta y_0)$		
1 (x_1)	2 (y ₁)		$[\nabla^2 y_2] -2 (\Delta^2 y_0)$	
		$[\nabla y_2] -1 (\Delta y_1)$		$[\nabla^3 y_3]$ 12 $(\Delta^3 y_0)$
2 (x_2)	1 (y ₂)		$[\nabla^2 y_3]$ 10 $(\Delta^2 y_1)$	
		$[\nabla y_3]$ 9 (Δy_2)		
$3(x_3)$	10 (y_3)			

There are only four data are given. Hence the polynomial is of order 3

The Newton's forward interpolation formula is

$$y(x) = y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u-1)}{2!} \Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!} \Delta^3 y_0 + \frac{u(u-1)(u-2)(u-3)}{4!} \Delta^4 y_0 + \cdots$$

where
$$u = \frac{x - x_0}{h}$$
. Here $x_0 = 0$ & $h = 1 - 0 = 1$ (or) $2 - 1 = 1$
Let $u = \left(\frac{x - 0}{1}\right) = x \implies u = x$
 $y(x) = +1 + \frac{(x)}{1!}(1) + \frac{(x)[x - 1]}{2!}(-2) + \frac{(x)[x - 1][x - 2]}{3!}(12)$
 $= 1 + x - (x)[x - 1] + \left(\frac{12}{6}\right)(x)[x - 1][x - 2]$
 $= 1 + x - [x^2 - x] + (2)[x^2 - x][x - 2]$
 $= -x^2 + x + 1 + x + (2)[x^3 - x^2 - 2x^2 + 2x]$
 $= -x^2 + 2x + 1 + (2)[x^3 - 3x^2 + 2x]$
 $= -x^2 + 2x + 1 + 2x^3 - 6x^2 + 4x$
 $= 2x^3 - 7x^2 + 6x + 1$
 $y(x) = 2x^3 - 7x^2 + 6x + 1$
To find $y(4)$:
 $f(4) = 2(4)^3 - 7(4)^2 + 6(4) + 1 = 2(64) = 7(16) + 6(4) + 1$
 $f(4) = 41$
Verification : $f(2) = 2(2)^3 = 7(2)^2 + 6(2) + 1 \implies = 16 - 28 + 12 + 1$
 $f(2) = +1$

The Newton's backward interpolation formula is

$$y(x) = y(x_{n} + ph) = y_{n} + \frac{V}{1!} \nabla y_{n} + \frac{V(V+1)}{2!} \nabla^{2}y_{n} + \frac{V(V+1)(V+2)}{3!} \nabla^{3}y_{n} + \dots \dots$$
where $u = \frac{x-x_{n}}{h}$. Here $x_{3} = 3 \& h = 1 - 0 = 1$ (or) $2 - 1 = 1$

$$let \quad u = \left(\frac{x-3}{1}\right) = x - 3 \implies u = (x-3)$$

$$y(x) = 10 + \frac{(x-3)}{1!} (9) + \frac{(x-3)[(x-3)+1]}{2!} (10) + \frac{(x-3)[(x-3)+1][(x-3)+2]}{3!} (12)$$

$$= 10 + 9 (x-3) + \left(\frac{10}{2}\right)(x-3)(x-2) + \left(\frac{12}{6}\right)(x-3)(x-2)(x-1)$$

$$= 9x - 17 + (5)(x^{2} - 3x - 2x + 6) + (2)(x^{2} - 3x - 2x + 6)(x-1)$$

$$= 9x - 17 + (5x^{2} - 15x - 10x + 30) + (2)(x^{3} - 3x^{2} - 2x^{2} + 6x - x^{2} + 3x + 2x - 6)$$

$$= 9x - 17 + 5x^{2} - 25x + 30 + (2)(x^{3} - 6x^{2} + 11x - 6)$$

$$= 9x - 17 + 5x^{2} - 25x + 30 + (2)(x^{3} - 6x^{2} + 11x - 6)$$

$$= 9x - 17 + 5x^{2} - 25x + 30 + (2)(x^{3} - 6x^{2} + 11x - 6)$$

$$= 9x - 17 + 5x^{2} - 25x + 30 + (2)(x^{3} - 6x^{2} + 11x - 6)$$

$$= 9x - 17 + 5x^{2} - 25x + 30 + (2)(x^{3} - 6x^{2} + 11x - 6)$$

$$= 9x - 17 + 5x^{2} - 25x + 30 + (2)(x^{3} - 6x^{2} + 11x - 6)$$

$$= 9x - 17 + 5x^{2} - 25x + 30 + (2)(x^{3} - 6x^{2} + 11x - 6)$$

$$= 9x - 17 + 5x^{2} - 25x + 30 + (2)(x^{3} - 6x^{2} + 11x - 6)$$

$$= 9x - 17 + 5x^{2} - 25x + 30 + (2)(x^{3} - 6x^{2} + 11x - 6)$$

$$= 9x - 17 + 5x^{2} - 25x + 30 + (2)(x^{3} - 6x^{2} + 11x - 6)$$

$$= 9x - 17 + 5x^{2} - 25x + 30 + (2)(x^{3} - 6x^{2} + 11x - 6)$$

$$= 9x - 17 + 5x^{2} - 25x + 30 + (2)(x^{3} - 6x^{2} + 11x - 6)$$

$$= 9x - 17 + 5x^{2} - 25x + 30 + (2)(x^{3} - 6x^{2} + 11x - 6)$$

$$= 9x - 17 + 5x^{2} - 25x + 30 + (2)(x^{3} - 12x^{2} + 22x - 12)$$

$$= y(x) = 2x^{3} - 7(4)^{2} + 6(4) + 1$$

Therefore the cubic polynomial in both cases are correct.

5. Using Newton's backward formula find the interpolating polynomial of degree 3 for the data.

 $f(-0.75) = -0.07181250, \ f(-0.5) = -0.024750, \ f(-0.25) = 0.33493750, \ f(0) = 1.10100.$ Hence find $f\left(\frac{-1}{3}\right)$.

Solution : Since f(x) = y. Let us form the difference table

	х	У	∇y	$\nabla^2 y$	$\nabla^3 y$
--	---	---	------------	--------------	--------------

$-0.75(x_0)$	-0.07181250 (y_0)			
		$[\nabla y_1]$ 0.0470625		
$-0.5(x_1)$	-0.024750 (y_1)		$[\nabla^2 y_2]$ 0.312625	
		$[\nabla y_2]$ 0.3596875		$[\nabla^3 y_3]$ 0.09375
-0.25 (<i>x</i> ₂)	$0.33493750 (y_2)$		$[\nabla^2 y_3]$ 0.400375	
		[∇y ₃] 0.766062 5		
0 (x_3)	1.10100 (y ₃)			

There are only four data are given. Hence the polynomial is of order 3

The Newton's backward interpolation formula is

$$\begin{split} y\left(x\right) &= y\left(x_{n} + ph\right) = y_{n} + \frac{V}{11} \nabla y_{n} + \frac{V(V+1)}{2!} \nabla^{2} y_{n} + \frac{V(V+1)(V+2)}{3!} \nabla^{3} y_{n} + \cdots \dots \\ \\ where \ u &= \frac{x - x_{n}}{n}. \ \text{Here} \ x_{3} = 0 \ \& \ h = -0.50 - (-0.75) = +0.25 \\ \\ Let \ u &= \left(\frac{x - d}{0.25}\right) = \frac{x}{0.25} \Rightarrow u = \frac{x}{0.25} \\ y\left(x\right) &= 1.10100 + \frac{\left(\frac{x}{0.25}\right)}{1!} \left(0.7660625\right) + \frac{\left(\frac{x}{0.25}\right)\left[\left(\frac{x}{0.25}\right) + 1\right]}{2!} \left(0.406375\right) \\ &+ \frac{\left(\frac{x}{0.25}\right)\left[\left(\frac{x}{0.25}\right) + 1\right]\left[\left(\frac{x}{0.25}\right) + 2\right]}{3!} \left(0.09375\right) \\ \\ &= 1.10100 + \left(\frac{x}{0.25}\right)\left(0.7660625\right) + \left(\frac{x}{0.25}\right)\left(\frac{0.406375}{2}\right) + \left(\frac{x}{0.25}\right)\left(\frac{x + 0.25}{0.25}\right)\left(\frac{x + 0.50}{0.25}\right)\left(\frac{0.09375}{6}\right) \\ \\ &= 1.10100 + x\left(\frac{0.7660625}{0.25}\right) + x\left(x + 0.25\right)\left(\frac{0.406375}{2(0.25)(0.25)}\right) + x\left(x + 0.25\right)\left(x + 0.50\right)\left(\frac{0.09375}{2(0.25)(0.25)(0.50)}\right) \\ \\ &= 1.10100 + x\left(\frac{0.7660625}{0.25}\right) + \left(x^{2} + 0.25x\right)\left(\frac{0.406375}{2(0.25)(0.25)}\right) + \left(x^{2} + 0.25x\right)\left(x + 0.50\right)\left(\frac{0.09375}{2(0.25)(0.25)(0.50)}\right) \\ \\ &= 1.10100 + x\left(\frac{0.7660625}{0.25}\right) + \left(x^{2} + 0.25x\right)\left(\frac{0.406375}{2(0.25)(0.25)}\right) + \left(x^{2} + 0.25x\right)\left(x + 0.50\right)\left(\frac{0.09375}{2(0.25)(0.25)(0.25)(0.50)}\right) \\ \\ &= 1.10100 + x\left(\frac{0.7660625}{0.25}\right) + \left(x^{2} + 0.25x\right)\left(\frac{0.406375}{2(0.25)(0.25)}\right) + \left(x^{2} + 0.25x\right)\left(\frac{0.406375}{2(0.25)(0.25)}\right) \\ \\ &= (1.0100 + x\left(\frac{0.7660625}{0.25}\right) + \left(x^{2} + 0.25x\right)\left(\frac{0.406375}{2(0.25)(0.25)}\right) \\ \\ &= (1.0100 + x\left(\frac{0.7660625}{0.25}\right) + \left(x^{2} + 0.25x\right)\left(\frac{0.406375}{2(0.25)(0.25)}\right) \\ \\ &= (1.0100 + x\left(\frac{0.7660625}{0.25}\right) + \left(x^{2} + 0.25x\right)\left(\frac{0.406375}{2(0.25)(0.25)}\right) \\ \\ &= (1.0100 + x\left(\frac{0.7660625}{0.25}\right) + \left(x^{2} + 0.25x\right)\left(\frac{0.406375}{2(0.25)(0.25)}\right) \\ \\ &= (1.0100 + x\left(\frac{0.7660625}{0.25}\right) + \left(x^{2} + 0.25x\right)\left(\frac{0.406375}{2(0.25)(0.25)}\right) \\ \\ &= (1.0100 + x\left(\frac{0.7660625}{0.25}\right) + \left(x^{2} + 0.25x\right)\left(\frac{0.406375}{2(0.25)(0.25)}\right) \\ \\ &= (1.0100 + x\left(\frac{0.7660625}{0.25}\right) + \left(x^{2} + 0.25x\right)\left(\frac{0.406375}{2(0.25)(0.25)}\right) \\ \\ &= (1.0100 + x\left(\frac{0.7660625}{0.25}\right) + \left(x^{2} + 0.25x\right)\left(\frac{0.406375}{2(0.25)(0.25)}\right) \\ \\ \\ &= (1.0100 + x\left(\frac{0.7660625}{0.25}\right) + \left(x^{2} + 0.25x\right)\left(\frac{0.406$$

To find y(4):

$$f(4) = 2(4)^3 - 7(4)^2 + 6(4) + 1$$
$$f(4) = 41$$

Verification : $f(2) = 2(2)^3 - 7(2)^2 + 6(2) + 1 \implies = 16 - 28 + 12 + 1$

f(2) = +1

Therefore the polynomial is correct.

6. From the following data, find the number of students whose weight is between 60 to 70.

weight in Lbs:	0-40	40 - 60	60 - 80	80 - 100	100 - 120
No.of Students	250	120	100	70	50

Solution : We form the difference table

х	У	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$
Below 40 (x_0)	250 (y_0)				
		120 (Δy_0)			
Below 60 (x_1)	370 (y ₁)		$-20 \ (\Delta^2 y_0)$	0	
		100 (Δy_1)	and and	$-10 \ (\Delta^3 y_0)$	
Below 80 (x_2)	470 (y ₂)		$-30 (\Delta^2 y_1)$		20 $(\Delta^4 y_0)$
		70 (Δy ₂)		10 $(\Delta^3 y_1)$	
Below 100 (x ₃)	540 (y ₃)	0	$-20 \ (\Delta^2 y_2)$		
		50 (Δy_3)			
Below 120 (x_4)	590 (y ₄)				

The Newton's forward formula is

$$y(x) = y(x_0 + ph) = y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u-1)}{2!} \Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!} \Delta^3 y_0 + \frac{u(u-1)(u-2)(u-3)}{4!} \Delta^4 y_0 + \dots \dots$$

where $u = \frac{x - x_0}{h}$. Here $x_0 = 40$ & h = 60 - 40 = 20 (or) 80 - 60 = 20

Let $u = \left(\frac{70-40}{20}\right) = \frac{30}{20} = 1.5$ Since x = 70

$$y(70) = 250 + \frac{(1.5)}{1!}(250) + \frac{(1.5)[1.5-1]}{2!}(-20) + \frac{(1.5)[1.5-1][1.5-2]}{3!}(-10) + \frac{(1.5)[1.5-1][1.5-2][1.5-3]}{4!}(-20) + \frac{(1.5)[1.5-1][1$$

 $= 250 + (1.5)(250) + (1.5)[0.5]\left(-\frac{20}{2}\right) + (1.5)[0.5][-0.5]\left(-\frac{10}{6}\right) + (1.5)[0.5][-0.5][-1.5]\left(-\frac{20}{24}\right) +$ = 250 + 180 - 7.5 + 0.625 + 0.46875

$$y(70) = 423.59 = 424 (App)$$

7. The following data are taken from the steam table.

	Temp ⁰ C	140	150	160	170	180		
	Pressure $\frac{kgf}{cm^2}$	3.685	4.854	6.302	8.076	10.225		
Find th	Find the pressure at temperature $t = 142^{\circ} \& t = 175^{\circ}$.							

Solution : We form the difference table

t	р	Δp	$\Delta^2 p$	$\Delta^3 p$	$\Delta^4 p$
140	3.685 (y_0)				
		1.169 (Δy ₀)			
150	4.854 (y ₁)		0.279 $(\Delta^2 y_0)$		
		$1.448(\Delta y_1)$		0.047 $(\Delta^3 y_0)$	
160	6.302 (y ₂)		0.326 $(\Delta^2 y_1)$		0.002 (Δ ⁴
		1.774 (Δy ₂)	2 h	0.049 ($\Delta^3 y_1$)	
170	8.076 (y ₃)		0.375 $(\Delta^2 y_2)$		
		2.149 (Δy ₃)	8		
180	10.225 (y ₄)		X		
To find the press	sure at temperature	$t = 142^{0}$			

To find the pressure at

Let us use the Newton's forward formula :

$$y(x) = y(x_0 + ph) = y_0 + \frac{u}{1!} \bigtriangleup y_0 + \frac{u(u-1)}{2!} \bigtriangleup^2 y_0 + \frac{u(u-1)(u-2)}{3!} \bigtriangleup^3 y_0 + \frac{u(u-1)(u-2)(u-3)}{4!} \bigtriangleup^4 y_0 + \dots \dots$$

where $u = \frac{x - x_0}{h}$. Here $x_0 = 142$ & $h = 180 - 170 = 10$ (or) $160 - 150 = 10$

Let $u = \left(\frac{142 - 140}{10}\right) = \frac{2}{10} = 0.2$ Since x = 142

$$p(142) = 3.685 + \frac{(0.2)}{1!}(1.169) + \frac{(0.2)[0.2 - 1]}{2!}(0.279) + \frac{(0.2)[0.2 - 1][0.2 - 2]}{3!}(0.047) + \frac{(0.2)[0.2 - 1][0.2 - 2][0.2 - 3]}{4!}(0.002)$$

$$= 3.685 + (0.2) (1.169) + (0.2)[-0.8] \left(\frac{0.279}{2}\right) + (0.2)[-0.8][-1.8] \left(\frac{0.047}{6}\right) + (0.2)[-0.8][-1.8][-2.8] \left(\frac{0.002}{24}\right) + (0.2)[-0.8][-1.8][-2.8][$$

 $= 3.685 \pm 0.2338 \pm 0.02332 \pm 0.002256 \pm 0.0000672$

 $p(142^0) = 3.898(App)$

To find the pressure at temperature $t = 175^{\circ}$

Let us use the Newton's backward formula :

$$y(x) = y(x_n + ph) = y_n + \frac{V}{1!} \nabla y_n + \frac{V(V+1)}{2!} \nabla^2 y_n + \frac{V(V+1)(V+2)}{3!} \nabla^3 y_n + \dots \dots$$

where $u = \frac{x - x_n}{h}$. Here $x_n = 180$ & h = 180 - 170 = 10 (or) 160 - 150 = 10

Let
$$u = \left(\frac{175-180}{10}\right) = -\frac{5}{10} \implies u = -0.5$$

 $y(x) = 10.225 + \frac{(-0.5)}{1!} (2.149) + \frac{(-0.5)[(-0.5) + 1]}{2!} (0.375) + \frac{(-0.5)[-0.5 + 1][-0.5 + 2]}{3!} (0.049)$
 $+ \frac{(-0.5)[-0.5 + 1][-0.5 + 2][-0.5 + 3]}{4!} (0.002)$
 $y(x) = 10.225 + (-0.5) (2.149) + (-0.5)[0.5] \left(\frac{0.375}{2}\right) + (-0.5)[0.5][1.5] \left(\frac{0.049}{6}\right)$
 $+ (-0.5)[0.5][1.5][2.5] \left(\frac{0.002}{24}\right)$
 $= 1.225 - 1.0745 - 0.0046875 + 0.0030625 - 0.000078125$
 $p(175^0) = 9.100 (App)$