The Taylor series algorithm is

$$
\begin{aligned}
& y(x)=y_{0}+\frac{\left(x-x_{0}\right)}{1!} y_{0}^{\prime}+\frac{\left(x-x_{0}\right)^{2}}{2!} y_{0}^{\prime \prime}+\frac{\left(x-x_{0}\right)^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{\left(x-x_{0}\right)^{4}}{4!} y_{0}^{i v}+\cdots \\
& \text { (Or) } y(x)=y_{0}+\frac{h}{1!} y_{0}^{\prime}+\frac{h^{2}}{2!} y_{0}^{\prime \prime}+\frac{h^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{h^{4}}{4!} y_{0}^{i v}+\cdots \quad \text { Where } h=x_{1}-x_{0}
\end{aligned}
$$

Example. 1:

Using Taylor series method Find the value y at $x=0.1$ if $\frac{d y}{d x}=x^{2} y-1, y(0)=1$.
Solution: Given $\frac{d y}{d x}=x^{2} y-1 \quad \& \quad y(0)=1 \Rightarrow x_{0}=0, y_{0}=1 \quad$ Since $\quad\left[y\left(x_{0}\right)=y_{0}\right]$ Taylor series formula is
$y(x)=y_{0}+\frac{\left(x-x_{0}\right)}{1!} y_{0}^{\prime}+\frac{\left(x-x_{0}\right)^{2}}{2!} y_{0}^{\prime \prime}+\frac{\left(x-x_{0}\right)^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{\left(x-x_{0}\right)^{4}}{4!} y_{0}^{i v}+\ldots$.

Therefore equation (1) becomes,

$$
\begin{aligned}
y(x) & =y_{0}+\frac{\left(x-x_{0}\right)}{1!} y_{0}^{\prime}+\frac{\left(x-x_{0}\right)^{2}}{2!} y_{0}^{\prime \prime}+\frac{\left(x-x_{0}\right)^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{\left(x-x_{0}\right)^{4}}{4!} y_{0}^{i v}+\cdots \\
& =1+\frac{(x-0)}{1}(-1)+\frac{(x-0)^{2}}{2}(0)+\frac{(x-0)^{3}}{6}(2)+\frac{(x-0)^{4}}{24}(-6)+\cdots \\
y(x) & =1+x(-1)+\frac{x^{2}}{2}(0)+\frac{x^{3}}{6}(2)+\frac{x^{4}}{24}(-6)
\end{aligned}
$$

To find y at $x=0.1$

$$
\begin{aligned}
\therefore y(0.1) & =1+(0.1)(-1)+\frac{(0.1)^{2}}{2}(0)+\frac{(0.1)^{3}}{6}(2)+\frac{(0.1)^{4}}{24}(-6) \\
& =1-0.1+0+0.000333333-0.000025
\end{aligned}
$$

$\therefore \quad y(0.1)=0.900305$

Example. 2:

Solve $y^{\prime}=x+y, y(0)=1$ by Taylor series method. Find the value y at $x=0.1 \& 0.2$.
Solution:
Given $y^{\prime}=\frac{d y}{d x}=x+y \quad \& \quad y(0)=1 \Rightarrow x_{0}=0, \quad y_{0}=1 \quad$ Since $\quad\left[y\left(x_{0}\right)=y_{0}\right]$
Taylor series formula is
$y(x)=y_{0}+\frac{\left(x-x_{0}\right)}{1!} y_{0}^{\prime}+\frac{\left(x-x_{0}\right)^{2}}{2!} y_{0}^{\prime \prime}+\frac{\left(x-x_{0}\right)^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{\left(x-x_{0}\right)^{4}}{4!} y_{0}^{i \nu}+\cdots$

$y^{\prime}=x+y$	$y_{0}^{\prime}=x_{0}+y_{0}=0+1$	$y_{0}^{\prime}=1$
$y^{\prime \prime}=1+y^{\prime}$	$y_{0}^{\prime \prime}=1+y_{0}^{\prime}=1+1$	$y_{0}^{\prime \prime}=2$
$y^{\prime \prime \prime}=0+y^{\prime \prime}$	$y_{0}^{\prime \prime \prime}=y_{0}^{\prime \prime}=2$	$y_{0}^{\prime \prime \prime}=2$
$y^{\prime \nu}=y^{\prime \prime \prime}$	$y_{0}^{\prime \nu}=y_{0}^{\prime \prime \prime}=2$	$y_{0}^{\prime v}=2$

Therefore equation (1) becomes,
$y(x)=y_{0}+\frac{\left(x-x_{0}\right)}{1!} y_{0}^{\prime}+\frac{\left(x-x_{0}\right)^{2}}{2!} y_{0}^{\prime \prime}+\frac{\left(x-x_{0}\right)^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{\left(x-x_{0}\right)^{4}}{4!} y_{0}^{i \nu}+\cdots$
$=1+\frac{(x-0)}{1}(1)+\frac{(x-0)^{2}}{2}(2)+\frac{(x-0)^{3}}{6}(2)+\frac{(x-0)^{4}}{24}(2)+\cdots$
$y(x)=1+x+\frac{x^{2}}{2}(2)+\frac{x^{3}}{6}(2)+\frac{x^{4}}{24}(2)$
To find y at $x=0.1$

$$
\begin{aligned}
\therefore y(0.1) & =1+(0.1)+\frac{(0.1)^{2}}{2}(2)+\frac{(0.1)^{3}}{6}(2)+\frac{(0.1)^{4}}{24}(2) \\
& =1+0.1+0.01+0.000333333+0.0000083333
\end{aligned}
$$

$\therefore \quad y(0.1)=1.11034$
To find y at $\boldsymbol{x}=0.2$

$$
\begin{align*}
\therefore y(0.2) & =1+(0.2)+\frac{(0.2)^{2}}{2}(2)+\frac{(0.2)^{3}}{6}(2)+\frac{(0.2)^{4}}{24} \tag{2}\\
& =1+0.2+0.04+0.0026667+0.00013333
\end{align*}
$$

$\therefore \quad y(0.1)=1.2428000$
Example. 3: Solve $\frac{d y}{d x}=y^{2}+x^{2}$ with $y(0)=1$. Use Taylor's method at $x=0.2$ and 0.4 .

Solution: Given $\frac{d y}{d x}=\boldsymbol{y}^{2}+\boldsymbol{x}^{2} \quad \& \quad y(0)=1 \Rightarrow x_{0}=0, y_{0}=1 \quad$ Since $\quad\left[y\left(x_{0}\right)=y_{0}\right]$ Taylor series formula is
$y(x)=y_{0}+\frac{\left(x-x_{0}\right)}{1!} y_{0}^{\prime}+\frac{\left(x-x_{0}\right)^{2}}{2!} y_{0}^{\prime \prime}+\frac{\left(x-x_{0}\right)^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{\left(x-x_{0}\right)^{4}}{4!} y_{0}^{i v}+\cdots$

$y^{\prime}=y^{2}+x^{2}$	$y_{0}^{\prime}=y_{0}^{2}+x_{0}^{2}=1+0$	$y_{0}^{\prime}=1$
$y^{\prime \prime}=2 y y^{\prime}+2 x$	$y_{0}^{\prime \prime}=2 y_{0} y_{0}^{\prime}+2 x_{0}=2(1)(1)+2(0)$	$y_{0}^{\prime \prime}=2$
$y^{\prime \prime \prime}=2 y y^{\prime \prime}+2 y^{\prime} y^{\prime}+2$	$y_{0}^{\prime \prime \prime}=2 y_{0} y_{0}^{\prime \prime}+2\left(y_{0}^{\prime}\right)^{2}+2$	
$y^{\prime \prime \prime}=2 y y^{\prime \prime}+2\left(y^{\prime}\right)^{2}+2$	$=2(1) 2+2(1)+2$	$y_{0}^{\prime \prime \prime}=8$
$y^{\prime v}=2 y y^{\prime \prime \prime}+2 y^{\prime} y^{\prime \prime}+4 y^{\prime} y^{\prime \prime}$	$y_{0}^{\prime v}=2 y_{0} y_{0}^{\prime \prime \prime}+6 y_{0}^{\prime} y_{0}^{\prime \prime}$	
$y^{\prime \nu}=2 y y^{\prime \prime \prime}+6 y^{\prime} y^{\prime \prime}$	$=2(1) 8+6(1) 2$	$y_{0}^{\prime v}=28$

Therefore equation (1) becomes,
$y(x)=y_{0}+\frac{\left(x-x_{0}\right)}{1!} y_{0}^{\prime}+\frac{\left(x-x_{0}\right)^{2}}{2!} y_{0}^{\prime \prime}+\frac{\left(x-x_{0}\right)^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{\left(x+x_{0}\right)^{4}}{4!} y_{y_{0}^{i v}}+\cdots$

$$
\begin{equation*}
=1+\frac{(x-0)}{1}(1)+\frac{(x-0)^{2}}{2}(2)+\frac{(x-0)^{3}}{6}(8)+\frac{(x-0)^{4}}{24}(28)+\cdots \tag{1}
\end{equation*}
$$

$y(x)=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}(8)+\frac{x^{4}}{24}(28)$

To find y at $\boldsymbol{x}=0.2$

$$
\begin{align*}
\therefore \quad y(0.2) & =1+0.2+\frac{(0.2)^{2}}{2}+\frac{(0.2)^{3}}{6}(8)+\frac{(0.2)^{4}}{24}(2 \tag{28}\\
& =1+0.2+0.02+0.010667+0.00186667
\end{align*}
$$

$\therefore \quad y(0.2)=1.23253$
To find y at $\boldsymbol{x}=0.4$

$$
\begin{align*}
\therefore \quad y(0.4) & =1+0.4+\frac{(0.4)^{2}}{2}+\frac{(0.4)^{3}}{6}(8)+\frac{(0.4)^{4}}{24} \tag{28}\\
& =1+0.4+0.08+0.085333+0.0298667
\end{align*}
$$

$\therefore \quad y(0.4)=1.5952$
Example. 4: Using Taylor series method with the first five terms in the expansion find $\boldsymbol{y}(\mathbf{0 . 1})$ correct to three decimal places, given that $\frac{d y}{d x}=e^{x}-y^{2}, y(0)=1$.

Solution: Given $\frac{\boldsymbol{d} y}{\boldsymbol{d} \boldsymbol{x}}=\boldsymbol{e}^{x}-\boldsymbol{y}^{2} \quad \& \quad y(0)=1 \Rightarrow x_{0}=0, y_{0}=1 \quad$ Since $\quad\left[y\left(x_{0}\right)=y_{0}\right]$
Taylor series formula is
$y(x)=y_{0}+\frac{\left(x-x_{0}\right)}{1!} y_{0}^{\prime}+\frac{\left(x-x_{0}\right)^{2}}{2!} y_{0}^{\prime \prime}+\frac{\left(x-x_{0}\right)^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{\left(x-x_{0}\right)^{4}}{4!} y_{0}^{i v}+\frac{\left(x-x_{0}\right)^{5}}{5!} y_{0}^{v} \ldots$

$y^{\prime}=e^{x}-y^{2}$	$y_{0}^{\prime}=e^{x_{0}}-y_{0}^{2}=e^{0}-1=1-1$	$y_{0}^{\prime}=0$
$y^{\prime \prime}=e^{x}-2 y y^{\prime}$	$y_{0}^{\prime \prime}=e^{x_{0}}-2 y_{0} y_{0}^{\prime}=1-2(1)(0)=1$	$y_{0}^{\prime \prime}=1$
$\begin{gathered} y^{\prime \prime \prime}=e^{x}-2 y y^{\prime \prime}-2 y^{\prime} y^{\prime} \\ y^{\prime \prime \prime}=e^{x}-2 y y^{\prime \prime}-2\left(y^{\prime}\right)^{2} \end{gathered}$	$\begin{aligned} y_{0}^{\prime \prime \prime}= & e^{x_{0}}-2 y_{0} y_{0}^{\prime \prime}-2\left(y_{0}^{\prime}\right)^{2} \\ & =1-2(1)(1)-2(0) \end{aligned}$	$y_{0}^{\prime \prime \prime}=-1$
$\begin{gathered} y^{\prime \nu}=e^{x}-2 y y^{\prime \prime \prime}-2 y^{\prime} y^{\prime \prime}-4 y^{\prime} y^{\prime \prime} \\ y^{\prime \nu}=e^{x}-2 y y^{\prime \prime \prime}-6 y^{\prime} y^{\prime \prime} \end{gathered}$	$\begin{aligned} y_{0}^{\prime \nu} & =e^{x_{0}}-2 y_{0} y_{0}^{\prime \prime \prime}-6 y_{0}^{\prime} y_{0}^{\prime \prime} \\ & =1-2(1)(-1)-6(0)(1) \end{aligned}$	$y_{0}^{\prime \nu}=3$
$\begin{gathered} y^{v}=e^{x}-2 y y^{\prime v}-2 y^{\prime} y^{\prime \prime \prime}-6 y^{\prime} y^{\prime \prime \prime}-6 y^{\prime \prime} y^{\prime \prime} \\ y^{v}=e^{x}-2 y y^{\prime v}-8 y^{\prime} y^{\prime \prime \prime}-6\left(y^{\prime \prime}\right)^{2} \end{gathered}$	$\begin{aligned} y^{\nu} & =e^{x_{0}}-2 y_{0} y_{0}^{\prime v}-8 y_{0}^{\prime} y_{0}^{\prime \prime \prime}-6\left(y_{0}^{\prime \prime}\right)^{2} \\ & =1-2(1\}(3)-8(0)(-1)-6(1)^{2} \end{aligned}$	$y^{v}=-11$

$$
\begin{align*}
y(x) & =y_{0}+\frac{\left(x-x_{0}\right)}{1!} y_{0}^{\prime}+\frac{\left(x-x_{0}\right)^{2}}{2!} y_{0}^{\prime \prime}+\frac{\left(x-x_{0}\right)^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{\left.(x)-x_{0}\right)^{4}}{4!} y_{0}^{i v}+\frac{\left(x-x_{0}\right)^{5}}{5!} y_{0}^{v} \ldots \tag{1}\\
& \left.=1+\frac{(x-0)}{1}(0)+\frac{(x-0)^{2}}{2}(1)+\frac{\left(x-y^{9}\right)^{3}}{6}\right) 1 y+\frac{(x-0)^{4}}{24}(3)+\frac{(x-0)^{5}}{120}(-11) \ldots
\end{align*}
$$

$$
y(x)=1+x(0)+\frac{x^{2}}{2}(1)+\frac{x^{3}}{6}(-1)+\frac{x^{4}}{24}(3)+\frac{x^{5}}{120}(-11) \ldots
$$

To find $y(0.1):\left[\begin{array}{lll}y & \text { at } & x=0.1\end{array}\right]$

$$
\begin{aligned}
\therefore \quad y(0.1) & =1+0.1(0)+\frac{(0.1)^{2}}{2}(1)+\frac{(0.1)^{3}}{6}(-1)+\frac{(0.1)^{4}}{24}(3)+\frac{(0.1)^{5}}{120}(-11) \\
& =1+0+0.005-0.00016667+0.0000125-0.00000091667
\end{aligned}
$$

$\therefore \quad y(0.2)=1.004844$
Example. 5: Using Taylor series method Find $\boldsymbol{y}(\mathbf{0 . 2}) \& y(0.4)$ correct to four decimal places given $\frac{d y}{d x}=1-2 x y, y(0)=0$.

Solution: Given $\frac{d y}{d x}=y^{\prime}=1-2 x y \quad \& \quad y(0)=0 \Rightarrow x_{0}=0, y_{0}=0 \quad$ Since $\left[y\left(x_{0}\right)=y_{0}\right]$
Taylor series formula is
$y(x)=y_{0}+\frac{\left(x-x_{0}\right)}{1!} y_{0}^{\prime}+\frac{\left(x-x_{0}\right)^{2}}{2!} y_{0}^{\prime \prime}+\frac{\left(x-x_{0}\right)^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{\left(x-x_{0}\right)^{4}}{4!} y_{0}^{i v}+\frac{\left(x-x_{0}\right)^{5}}{5!} y_{0}^{v}+\cdots$

$y^{\prime}=1-2 x y$	$y_{0}^{\prime}=1-2 x_{0} y_{0}=1-2(0)(0)$	$y_{0}^{\prime}=1$
$y^{\prime \prime}=0-2 x y^{\prime}-2 y$	$\begin{aligned} y_{0}^{\prime \prime} & =-2 x_{0} y_{0}^{\prime}-2 y_{0} \\ & =-2(0)(1)-2(0) \end{aligned}$	$y_{0}^{\prime \prime}=0$
$\begin{gathered} y^{\prime \prime \prime}=-2 x y^{\prime \prime}-2 y^{\prime}-2 y^{\prime} \\ y^{\prime \prime \prime}=-2 x y^{\prime \prime}-4 y^{\prime} \end{gathered}$	$\begin{gathered} y_{0}^{\prime \prime \prime}=-2 x_{0} y_{0}^{\prime \prime}-4 y_{0}^{\prime} \\ \quad=-2(0)(0)-4(1) \end{gathered}$	$y_{0}^{\prime \prime \prime}=-4$
$\begin{gathered} y^{\prime v}=-2 x y^{\prime \prime \prime}-2 y^{\prime \prime}-4 y^{\prime \prime} \\ y^{\prime v}=-2 x y^{\prime \prime \prime}-6 y^{\prime \prime} \end{gathered}$	$\begin{aligned} y_{0}^{\prime v} & =-2 x_{0} y_{0}^{\prime \prime \prime}-6 y_{0}^{\prime \prime} \\ & =-2(0)(-4)-6(0) \end{aligned}$	$y_{0}^{\prime \nu}=0$
$\begin{gathered} y^{\nu}=-2 x y^{\prime \nu}-2 y^{\prime \prime \prime}-6 y^{\prime \prime \prime} \\ y^{\prime v}=-2 x y^{\prime \nu}-8 y^{\prime \prime \prime} \end{gathered}$	$\begin{aligned} y_{0}^{\prime v} & =-2 x_{0} y_{0}^{\prime \nu}-8 y_{0}^{\prime \prime \prime} \\ & =-2(0)(0)-8(-4) \end{aligned}$	$y_{0}^{\prime \nu}=32$

Therefore equation (1) becomes,
$y(x)=y_{0}+\frac{\left(x-x_{0}\right)}{1!} y_{0}^{\prime}+\frac{\left(x-x_{0}\right)^{2}}{2!} y_{0}^{\prime \prime}+\frac{\left(x-x_{0}\right)^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{\left(x-x_{0}\right)^{4}}{4!} x_{0}^{i v}+\frac{\left(x-x_{0}\right)^{5}}{5!} y_{0}^{v}+\cdots$

$$
=0+\frac{(x-0)}{1}(1)+\frac{(x-0)^{2}}{2}(0)+\frac{(x-0)^{3}}{6}(-4)+\frac{(x-0)^{4}}{24}(0)+\frac{(x-0)^{5}}{120}(32) \ldots
$$

To find $y(0.2)$:

$$
\begin{aligned}
\therefore \quad y(0.2) & =0.2+\frac{(0.2)^{3}}{6}(-4)+\frac{(0.2)^{5}}{120}(32) \\
& =0.2-0.005333+0.00008533
\end{aligned}
$$

$\therefore \quad y(0.1)=0.194752$
To find $\boldsymbol{y}(\mathbf{0 . 4})$:

$$
\begin{aligned}
\therefore \quad y(0.4) & =0.4+\frac{(0.4)^{3}}{6}(-4)+\frac{(0.4)^{5}}{120}(32) \\
& =0.4-0.0426667+0.002730667
\end{aligned}
$$

$\therefore \quad y(0.1)=0.360063$
Example. 6: Using Taylor series method Find \boldsymbol{y} at $\boldsymbol{x}=\mathbf{0} .1$ correct to four decimal places given

$$
\frac{d y}{d x}=x^{2}-y, y(0)=1 . \text { Take } h=0.1
$$

Solution: Given $\frac{d y}{d x}=y^{\prime}=x^{2}-y \quad \& \quad y(0)=1 \Rightarrow x_{0}=0, y_{0}=1 \quad$ Since $\quad\left[y\left(x_{0}\right)=y_{0}\right]$
Taylor series formula is
$y(x)=y_{0}+\frac{\left(x-x_{0}\right)}{1!} y_{0}^{\prime}+\frac{\left(x-x_{0}\right)^{2}}{2!} y_{0}^{\prime \prime}+\frac{\left(x-x_{0}\right)^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{\left(x-x_{0}\right)^{4}}{4!} y_{0}^{i v}+\cdots$

$y^{\prime}=x^{2}-y$	$y_{0}^{\prime}=x_{0}^{2}-y_{0}=0-1$	$y_{0}^{\prime}=-1$
$y^{\prime \prime}=2 x-y^{\prime}$	$y_{0}^{\prime \prime}=2 x_{0}-y_{0}^{\prime}=2(0)-(-1)$	$y_{0}^{\prime \prime}=+1$
$y^{\prime \prime \prime}=2-y^{\prime \prime}$	$y_{0}^{\prime \prime \prime}=2-y_{0}^{\prime \prime}=2-1$	$y_{0}^{\prime \prime \prime}=1$
$y^{\prime v}=0-y^{\prime \prime \prime}$	$y_{0}^{\prime v}=-y_{0}^{\prime \prime \prime}=-1$	$y_{0}^{\prime v}=-1$

Therefore equation (1) becomes,
$y(x)=y_{0}+\frac{\left(x-x_{0}\right)}{1!} y_{0}^{\prime}+\frac{\left(x-x_{0}\right)^{2}}{2!} y_{0}^{\prime \prime}+\frac{\left(x-x_{0}\right)^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{\left(x-x_{0}\right)^{4}}{4!} y_{0}^{i v}+\cdots$

$$
\begin{equation*}
=1+\frac{(x-0)}{1}(-1)+\frac{(x-0)^{2}}{2}(1)+\frac{(x-0)^{3}}{6}(1)+\frac{(x-0))^{4}}{24}(-1) \tag{1}
\end{equation*}
$$

$y(x)=1-x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}(-1)$
To find $y(0.1): \quad[y$ at $x=0.1]$

$$
\begin{aligned}
\therefore \quad y(0.1) & =1-0.1+\frac{(0.1)^{2}}{2}+\frac{(0.1)^{3}}{6}+\frac{(0.1)^{4}}{24}(-1) \\
& =1-0.1+0.005+000016667-0.00000416667
\end{aligned}
$$

$\therefore \quad y(0.1)=0.90516$
Example. 7: Using Taylor series method, Find $y(1.1)$ given $y^{\prime}=x+y, y(1)=0$.
Solution: Given $\frac{d y}{d x}=y^{\prime}=x+y \quad \& \quad y(1)=0 \Rightarrow x_{0}=1, y_{0}=0 \quad$ Since $\quad\left[y\left(x_{0}\right)=y_{0}\right]$
Taylor series formula is
$y(x)=y_{0}+\frac{\left(x-x_{0}\right)}{1!} y_{0}^{\prime}+\frac{\left(x-x_{0}\right)^{2}}{2!} y_{0}^{\prime \prime}+\frac{\left(x-x_{0}\right)^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{\left(x-x_{0}\right)^{4}}{4!} y_{0}^{i v}+\cdots$

$y^{\prime}=x+y$	$y_{0}^{\prime}=x_{0}+y_{0}=1+0$	$y_{0}^{\prime}=1$
$y^{\prime \prime}=1+y^{\prime}$	$y_{0}^{\prime \prime}=1+y_{0}^{\prime}=1+1$	$y_{0}^{\prime \prime}=2$
$y^{\prime \prime \prime}=y^{\prime \prime}$	$y_{0}^{\prime \prime \prime}=y_{0}^{\prime \prime}=2$	$y_{0}^{\prime \prime \prime}=2$

$y^{\prime \nu}=y^{\prime \prime \prime}$	$y_{0}^{\prime v}=y_{0}^{\prime \prime \prime}=2$	$y_{0}^{\prime v}=2$

Therefore equation (1) becomes,

$$
\begin{align*}
y(x) & =y_{0}+\frac{\left(x-x_{0}\right)}{1!} y_{0}^{\prime}+\frac{\left(x-x_{0}\right)^{2}}{2!} y_{0}^{\prime \prime}+\frac{\left(x-x_{0}\right)^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{\left(x-x_{0}\right)^{4}}{4!} y_{0}^{i v}+\cdots \tag{1}\\
& =0+\frac{(x-1)}{1}(1)+\frac{(x-1)^{2}}{2}(2)+\frac{(x-1)^{3}}{6}(2)+\frac{(x-1)^{4}}{24}(2) \tag{2}\\
y(x) & =(x-1)+(x-1)^{2}+\frac{(x-1)^{3}}{3}+\frac{(x-1)^{4}}{12}
\end{align*}
$$

To find $y(1.1): \quad[y$ at $x=1.1]$

$$
\begin{aligned}
\therefore y(1.1) & =(1.1-1)+(1.1-1)^{2}+\frac{(1.1-1)^{3}}{3}+\frac{(1.1-1)^{4}}{12} \\
& =(0.1)+(0.1)^{2}+\frac{(0.1)^{3}}{3}+\frac{(0.1)^{4}}{12} \\
& =0.1+0.01+0.0003333+0.0000083333
\end{aligned}
$$

$\therefore \quad y(0.1)=0.11034$

EULER'S METHOD \& MODIEED EULER'S METHOD

The Euler's formula is

$$
\begin{equation*}
y_{n+1}\left(x_{n}+h\right)=y_{n}+h\left[f\left(x_{n}, y_{n}\right)\right], \quad n=0,1,2, \ldots \ldots \tag{1}
\end{equation*}
$$

Example.1: Given $\boldsymbol{y}^{\prime}=-\boldsymbol{y}$ and $\boldsymbol{y}(0)=1$, determine the values of y at $x=(0.01)(0.01)(0.04)$ by Euler's method.

Solution: Given $y^{\prime}=-y$ and $y(0)=1 \quad \Rightarrow x_{0}=0, y_{0}=1 \quad$ [Since $y\left(x_{0}\right)=y_{0}$]

$$
\therefore \quad f(x, y)=-y
$$

To find $\boldsymbol{h}: \quad$ Since $y(0)=1 \quad \Rightarrow \quad y\left(x_{0}\right)=y_{0}$
We need to find y at $x=(0.01)(0.01)(0.04)$

$$
\begin{aligned}
& \Rightarrow y\left(x_{1}\right)=?,[y(0.01)=?] \quad \& \quad y\left(x_{2}\right)=?[y(0.02)=?] \quad . . \quad \Rightarrow x_{1}=0.01, \quad x_{2}=0.02 \ldots \\
& \therefore h=x_{1}-x_{0}=0.01-0.0=0.01 \quad \text { (or) } \quad h=x_{2}-x_{1}=0.02-0.01=0.01 \quad[\text { Difference }]
\end{aligned}
$$

The Euler's formula is

$$
\begin{equation*}
y_{n+1}\left(x_{n}+h\right)=y_{n}+h\left[f\left(x_{n}, y_{n}\right)\right], n=0,1,2, \ldots \ldots \tag{1}
\end{equation*}
$$

To find $y(0.01)$:

Put $n=0$, equation (1) becomes

$$
y_{1}\left(x_{0}+h\right)=y_{0}+h\left[f\left(x_{0}, y_{0}\right)\right]
$$

We have $x_{0}=0, y_{0}=1, h=0.01 \& f(x, y)=-y$

$$
\begin{aligned}
\therefore \quad y_{1}(0+0.01) & =1+(0.01)[f(0.1)] \\
y_{1}(0.01) & =1+(0.01)[-1]=1-0.01
\end{aligned}
$$

$$
y_{1}(0.01)=0.99 \quad\left[y\left(x_{1}\right)=y_{1}\right] \quad \Rightarrow x_{1}=0.01 \& y_{1}=0.99
$$

To find $\boldsymbol{y}(\mathbf{0 . 0 2)}$:
Put $\boldsymbol{n}=\mathbf{1}$, equation (1) becomes

$$
y_{2}\left(x_{1}+h\right)=y_{1}+h\left[f\left(x_{1}, y_{1}\right)\right]
$$

We have $x_{1}=0.01 \& y_{1}=0.99, h=0.01 \& f(x, y)=-y$
$\therefore \quad y_{2}(0.01+0.01)=0.99+(0.01)[f(0.01,0.99)]$

$$
\begin{gathered}
y_{2}(0.02)=0.99+(0.01)[-0.99]=0.99-0.0099 \\
\left.y_{2}(\mathbf{0 . 0 2})=\mathbf{0 . 9 8 0 1} \quad\left[\boldsymbol{y}\left(\boldsymbol{x}_{2}\right)=\boldsymbol{y}_{2}\right] \quad \Rightarrow x_{2}=\mathbf{0 . 0 2} \& \boldsymbol{y}_{2}\right)=\mathbf{0 . 9 8 0 1}
\end{gathered}
$$

To find $\boldsymbol{y}(\mathbf{0 . 0 3)}$:
Put $\boldsymbol{n}=2$, equation (1) becomes

$$
y_{3}\left(x_{2}+h\right)=y_{2}+h\left[f\left(x_{2}, y_{2}\right)\right]
$$

We have $x_{2}=0.02 \& y_{2}=0.9801, h=0.01 \& f(x, y)=-y$
$\therefore \quad y_{3}(0.02+0.01)=0.9801+(0.01)[f(0.02,0.9801)]$

$$
y_{3}(0.02)=0.9801+(0.01)[-0.9801]=0.9801-0.009801
$$

$$
y_{3}(0.02)=0.970299 \quad\left[y\left(x_{3}\right)=y_{3}\right] \Rightarrow x_{3}=0.03 \& y_{3}=0.970299
$$

To find $\boldsymbol{y}(0.04)$:
Put $n=3$, equation (1) becomes

$$
y_{4}\left(x_{3}+h\right)=y_{3}+h\left[f\left(x_{3}, y_{3}\right)\right]
$$

We have $x_{3}=0.03 \& y_{3}=0.970299, h=0.01 \& f(x, y)=-y$
$\therefore \quad y_{4}(0.02+0.01)=0.970299+(0.01)[f(0.03,0.970299)]$

$$
y_{4}(0.02)=0.970299+(0.01)[-0.970299]=0.970299-0.009702999
$$

$$
y_{4}(0.02)=0.96059 \quad\left[\boldsymbol{y}\left(x_{4}\right)=y_{4}\right] \Rightarrow x_{4}=0.03 \& y_{4}=0.96059
$$

Example . 2: Using Euler's method Solve numerically the equation

$$
y^{\prime}=x+y \quad, \quad y(0)=1 \quad \text { for } x=0.0(0.2)(1.0)
$$

Solution: Given $y^{\prime}=x+y$ and $y(0)=1 \Rightarrow x_{0}=0, y_{0}=1 \quad\left[\right.$ Since $\left.y\left(x_{0}\right)=y_{0}\right]$

$$
\therefore \quad f(x, y)=x+y
$$

To find $\boldsymbol{h}: \quad$ Since $y(0)=1 \quad \Rightarrow \quad y\left(x_{0}\right)=y_{0}$
We need to find y at $x=(0.0)(0.2)(1.0)$
$\Rightarrow y\left(x_{1}\right)=?,[y(0.2)=?] \quad \& y\left(x_{2}\right)=?[y(0.4)=?] \ldots \quad \Rightarrow x_{1}=0.2, \quad x_{2}=0.4 \ldots$
$\therefore h=x_{1}-x_{0}=0.2-0.0=0.2 \quad$ (or) $\quad h=x_{2}-x_{1}=0.4-0.2=0.2 \quad$ [Difference]
The Euler's formula is

$$
\begin{equation*}
y_{n+1}\left(x_{n}+h\right)=y_{n}+h\left[f\left(x_{n}, y_{n}\right)\right], n=0,1,2, \ldots . . \tag{1}
\end{equation*}
$$

To find $y(0.2)$:
Put $n=0$, equation (1) becomes

$$
y_{1}\left(x_{0}+h\right)=y_{0}+h\left[f\left(x_{0}, y_{0}\right)\right]
$$

We have $\quad x_{0}=0, y_{0}=1, h=0.2 \& f(x, y)=x+y$

$$
\therefore \quad y_{1}(0+0.2)=1+(0.2)[f(0,1)]
$$

$$
y_{1}(0.2)=1+(0.2)[0+1]=1+0.2
$$

$$
y_{1}(0.2)=1.2
$$

To find $y(0.4)$:

$$
\left[y\left(x_{1}\right)=y_{1}\right]^{-} \Rightarrow x_{1}=0.2 \& y_{1}=1.2
$$

Put $n=1$, equation (1) becomes

$$
y_{2}\left(x_{1}+h\right)=y_{1}+h\left[f\left(x_{1}, y_{1}\right)\right]
$$

We have $x_{1}=0.2 \& y_{1}=1.2, h=0.01 \& f(x, y)=x+y$
$\therefore \quad y_{2}(0.2+0.2)=1.2+(0.2)[f(0.2,1.2)]$

$$
y_{2}(0.4)=1.2+(0.2)[0.2+1.2]=1.2+0.28
$$

$$
y_{2}(0.4)=1.48 \quad\left[y\left(x_{2}\right)=y_{2}\right] \quad \Rightarrow \quad x_{2}=0.4 \& y_{2}=1.48
$$

To find $y(0.6)$:
Put $n=2$, equation (1) becomes

$$
y_{3}\left(x_{2}+h\right)=y_{2}+h\left[f\left(x_{2}, y_{2}\right)\right]
$$

We have $x_{2}=0.4 \& y_{2}=1.48, h=0.2 \& f(x, y)=x+y$

$$
\begin{aligned}
& \therefore \quad y_{3}(0.4+0.2)=1.48+(0.01)[f(0.4,1.48)] \\
& \quad y_{3}(0.6)=1.48+(0.2)[1.48+0.4]=1.48+0.176 \\
& \\
& y_{3}(0.6)=1.656 \quad\left[y\left(x_{3}\right)=y_{3}\right] \Rightarrow x_{3}=0.6 \& y_{3}=1.656
\end{aligned}
$$

To find $y(0.8):$
Put $n=3$, equation (1) becomes

$$
y_{4}\left(x_{3}+h\right)=y_{3}+h\left[f\left(x_{3}, y_{3}\right)\right]
$$

We have $x_{3}=0.6 \& y_{3}=1.656, h=0.2 \& f(x, y)=x+y$

$$
\therefore \quad y_{4}(0.6+0.2)=1.656+(0.2)[f(0.6,1.656)]
$$

$$
\begin{gathered}
y_{4}(0.8)=1.656+(0.2)[0.6+1.656]=1.656+0.4512 \\
y_{4}(0.8)=2.1072 \quad\left[y\left(x_{4}\right)=y_{4}\right] \quad \Rightarrow x_{4}=0.8 \& y_{4}=0.96059
\end{gathered}
$$

To find $y(1.0):$
Put $n=4$, equation (1) becomes

$$
y_{5}\left(x_{4}+h\right)=y_{4}+h\left[f\left(x_{4}, y_{4}\right)\right]
$$

We have $x_{4}=0.8 \& y_{4}=2.1072, h=0.2 \& f(x, y)=x+y$

$$
\begin{aligned}
\therefore \quad y_{5}(0.8+0.2) & =2.1072+(0.2)[f(0.8,2.1072)] \\
& =1.656+(0.2)[0.6+1.656]=1.656+0.4512 \\
y_{5}(\mathbf{1 . 0}) & =\mathbf{2 . 1 0 7 2} \quad\left(y\left(x_{5}\right)=y_{5}\right] \Rightarrow x_{4}=1.0 \& y_{5}=\mathbf{2 . 1 0 7 2}
\end{aligned}
$$

Example. 3 : Using Euler's find $y(0.3)$ of $y(x)$ satisfies the initial value problem

$$
\frac{d y}{d x}=\frac{1}{2}\left(1+x^{2}\right) y^{2}, y(0.2)=1.1114
$$

Solution: Given $y^{\prime}=f(x, y)=\frac{d y}{d x}=\frac{1}{2}\left(1+x^{2}\right) y^{2}$ and $y(0.2)=1.1114 \Rightarrow x_{0}=0.2, y_{0}=1.1114$

$$
\therefore f(x, y)=\frac{1}{2}\left(1+x^{2}\right) y^{2}
$$

To find h :
Since $y(0.2)=1.1114 \Rightarrow y\left(x_{0}\right)=y_{0}$
We need to find y at $x=0.3$
$\Rightarrow y\left(x_{1}\right)=?, \quad[y(0.3)=?] \quad \Rightarrow x_{1}=0.3$,
$\therefore h=x_{1}-x_{0}=0.3-0.2=0.1 \quad$ [Difference]
The Euler's formula is

$$
\begin{equation*}
y_{n+1}\left(x_{n}+h\right)=y_{n}+h\left[f\left(x_{n}, y_{n}\right)\right], n=0,1,2, \ldots \ldots \tag{1}
\end{equation*}
$$

To find $\boldsymbol{y}(\mathbf{0 . 3})$:
Put $n=0$, equation (1) becomes

$$
y_{1}\left(x_{0}+h\right)=y_{0}+h\left[f\left(x_{0}, y_{0}\right)\right]
$$

We have $x_{0}=0.2, y_{0}=1.1114, h=0.1 \& f(x, y)=\frac{1}{2}\left(1+x^{2}\right) y^{2}$

$$
\therefore \quad y_{1}(0.2+0.1)=1.1114+(0.1)[f(0.2,1.1114)]
$$

$$
=1+(0.1)\left[\frac{1}{2}\left(1+(0.2)^{2}\right)(1.1114)^{2}\right]=1.1114+0.1[0.642309]
$$

$$
y_{1}(0.3)=1.17564 \quad\left[y\left(x_{1}\right)=y_{1}\right] \quad \Rightarrow x_{1}=0.3 \& y_{1}=1.17564
$$

Example.4: Using Euler's method find the solution of the initial value problem

$$
\frac{d y}{d x}=\log (x+y), y(0)=2 \text { at } x=0.2 \text { by assuming } h=0.2
$$

Solution: Given

The Euler's formula is

$$
\begin{equation*}
y_{n+1}\left(x_{n}+h\right)=y_{n}+h\left[f\left(x_{n}, y_{n}\right)\right], n=0,1,2, \ldots \ldots \tag{1}
\end{equation*}
$$

To find y at $x=0.2 \quad[y(0.3)]:$
Put $n=0$, equation (1) becomes

$$
y_{1}\left(x_{0}+h\right)=y_{0}+h\left[f\left(x_{0}, y_{0}\right)\right]
$$

We have $x_{0}=0, y_{0}=2, h=0.2 \& f(x, y)=\log (x+y)$

$$
\begin{aligned}
& \therefore \quad y_{1}(0+0.2)=2+(0.2)[f(0.2)] \\
& y_{1}(0.2)=2+(0.2)[\log (0+2)]=2+0.2[\log 2] \\
&=2+(0.2)[0.301029]=2.060205
\end{aligned}
$$

$$
y_{1}(0.2)=2.060205 \quad\left[y\left(x_{1}\right)=y_{1}\right] \quad \Rightarrow x_{1}=0.2 \& y_{1}=2.060205
$$

$$
\begin{aligned}
& y^{\prime}=f(x, y)=\frac{d y}{d x}=\log (x+y) \text { and } y(0)=0 \quad\left[\text { Since } y\left(x_{0}\right)=y_{0}\right] \\
& \therefore f(x, y)=\log (x+y), h=0.2
\end{aligned}
$$

$$
\begin{equation*}
y_{n+1}\left(x_{n}+h\right)=y_{n}+h f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{h}{2} f\left(x_{n}, y_{n}\right)\right), n=0,1,2, \ldots . \tag{1}
\end{equation*}
$$

Example.5: By Modified Euler's method, compute $y(0.1)$ with $h=0.1$ from $\frac{d y}{d x}=y-\frac{2 x}{y}, y(0)=1$
Solution: Given

$$
\begin{aligned}
y^{\prime} & =f(x, y)=\frac{d y}{d x}=y-\frac{2 x}{y} \quad \text { and } y(0)=1 \Rightarrow x_{0}=0, y_{0}=1 \quad\left[\text { Since } y\left(x_{0}\right)=y_{0}\right] \\
& \therefore f(x, y)=y-\frac{2 x}{y}, h=0.1
\end{aligned}
$$

The Modified Euler's formula is

$$
\begin{equation*}
y_{n+1}\left(x_{n}+h\right)=y_{n}+h f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{h}{2} f\left(x_{n}, y_{n}\right)\right), n=0,1,2, \ldots . . \tag{1}
\end{equation*}
$$

To find y at $x=0.1 \quad[y(0.1)]:$
Put $n=0$, equation (1) becomes

$$
y_{1}\left(x_{0}+h\right)=y_{0}+h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{h}{2} f\left(x_{0}, y_{0}\right)\right)
$$

We have $x_{0}=0, y_{0}=1, h=0.1 \&$

$$
\begin{aligned}
\therefore \quad y_{1}(0+0.1) & =1+(0.1) f\left(0+\frac{0.1}{2}, 1+\frac{0.1}{2} f(0,1)\right) \\
y_{1}(0.1) & =1+(0.1) f\left(0.05,1+0.05\left[1-\frac{2(0)}{1}\right]\right) \\
& =1+(0.1) f(0.05,1+0.05[1]) \\
& =1+(0.1) f(0.05,1.05) \\
& =1+(0.1)\left[1.05-\frac{2(0.05)}{1.05}\right] \\
& =1+(0.1)[1.05-0.0952] \\
& =1+0.09548
\end{aligned}
$$

$$
y_{1}(0.1)=1.09548
$$

$$
y_{1}(0.1)=1.09548 \quad\left[y\left(x_{1}\right)=y_{1}\right] \quad \Rightarrow x_{1}=0.1 \& y_{1}=1.09548
$$

Example.6: Using Modified Euler's method, find $y(0.1)$ if $\frac{d y}{d x}=x^{2}+y^{2}, y(0)=1$.

Solution : Given

$$
y^{\prime}=f(x, y)=\frac{d y}{d x}=x^{2}+y^{2} \quad \text { and } \quad y(0)=1 \quad \Rightarrow x_{0}=0, y_{0}=1 \quad\left[\text { Since } \quad y\left(x_{0}\right)=y_{0}\right]
$$

To find \boldsymbol{h} :

$$
\text { Since } y(0)=1 \quad \Rightarrow y\left(x_{0}\right)=y_{0}
$$

Also we need to find $y(0.1) \quad \Rightarrow \quad y\left(x_{1}\right)=?,[y(0.1)=?] \quad \Rightarrow x_{1}=0.1$,
$\therefore h=x_{1}-x_{0}=0.1-0=0.1 \quad$ [Difference]
The Modified Euler's formula is

$$
\begin{equation*}
y_{n+1}\left(x_{n}+h\right)=y_{n}+h f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{h}{2} f\left(x_{n}, y_{n}\right)\right), n=0,1,2, \ldots . \tag{1}
\end{equation*}
$$

To find $\boldsymbol{y}(\mathbf{0 . 1})$:
Put $n=0$, equation (1) becomes

$$
y_{1}\left(x_{0}+h\right)=y_{0}+h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{h}{2} f\left(x_{0}, y_{0}\right)\right)
$$

We have $x_{0}=0, y_{0}=1, h=0.1 \& f(x, y)=x^{2}+y^{2}$

$$
\begin{aligned}
\therefore \quad y_{1}(0+0.1) & =1+(0.1) f\left(0+\frac{0.1}{2}, 1+\frac{0.1}{2} f(0.1)\right) \\
y_{1}(0.1) & =1+(0.1) f\left(0.05,1+0.05\left[0^{2}+1^{2}\right]\right) \\
& =1+(0.1) f(0.05,1)+0.05[1]) \\
& =1+(0.1) f(0.05,1.05) \\
& =1+(0.1)\left[(0.05)^{2}+(1.05)^{2}\right] \\
& =1+(0.1)[1.105] \\
& =1+0.1105
\end{aligned}
$$

$$
y_{1}(0.1)=1.1105
$$

$$
y_{1}(0.1)=1.1105 \quad\left[y\left(x_{1}\right)=y_{1}\right] \quad \Rightarrow x_{1}=0.1 \& y_{1}=1.1105
$$

Example. 7:

Consider the initial value problem $\frac{d y}{d x}=y-x^{2}+1, y(0)=0.5$. Using Modified Euler's method, find $y(0.2)$.
Solution: Given $y^{\prime}=f(x, y)=\frac{d y}{d x}=y-x^{2}+1 \quad$ and $y(0)=0.5 \Rightarrow x_{0}=0, y_{0}=0.5$

To find \boldsymbol{h} :

Since $y(0)=0.5 \Rightarrow y\left(x_{0}\right)=y_{0}$
Also we need to find $y(0.2) \quad \Rightarrow y\left(x_{1}\right)=?,[y(0.2)=?] \quad \Rightarrow x_{1}=0.2$,
$\therefore h=x_{1}-x_{0}=0.2-0=0.2 \quad$ [Difference]
The Modified Euler's formula is

$$
\begin{equation*}
y_{n+1}\left(x_{n}+h\right)=y_{n}+h f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{h}{2} f\left(x_{n}, y_{n}\right)\right), n=0,1,2, \ldots . \tag{1}
\end{equation*}
$$

To find $\boldsymbol{y}(\mathbf{0 . 2})$:
Put $n=0$, equation (1) becomes

$$
y_{1}\left(x_{0}+h\right)=y_{0}+h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{h}{2} f\left(x_{0}, y_{0}\right)\right)
$$

We have $x_{0}=0, y_{0}=0.5, h=0.1 \& f(x, y)=y-x^{2}+1$
$\left.\therefore \quad y_{1}(0+0.2)=0.5+(0.2) f\left(0+\frac{0.2}{2}, 0.5+\frac{0.2}{2} f(0,0.5)\right)\right)$

$$
y_{1}(0.2)=1+(0.2) f\left(0.1,1+0.1\left[0.5-0^{2}+1\right]\right)
$$

$$
=0.5+(0.2) f(0.1,0.5+0.1[151)
$$

$$
=0.5+(0.2) f(0.1,0.65)
$$

$$
=0.5+(0.2)\left[0.65-(0.1)^{2^{4}}+1\right]
$$

$$
=0.5+(0.2)[1.64]
$$

$$
=0.5+0.328
$$

$$
y_{1}(0.2)=0.828
$$

$$
y_{1}(0.2)=0.828 \quad\left[y\left(x_{1}\right)=y_{1}\right] \quad \Rightarrow x_{1}=0.2 \& y_{1}=0.828
$$

Example.8: Solve $y^{\prime}=1-y, y(0)=0$ by using Modified Euler's method.
Solution: Given

$$
y^{\prime}=f(x, y)=\frac{d y}{d x}=1-y \quad \text { and } \quad y(0)=0 \Rightarrow x_{0}=0, y_{0}=0 \quad\left[\text { Since } \quad y\left(x_{0}\right)=y_{0}\right]
$$

To find h :
Assume $h=0.1$
The Modified Euler's formula is

$$
\begin{equation*}
y_{n+1}\left(x_{n}+h\right)=y_{n}+h f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{h}{2} f\left(x_{n}, y_{n}\right)\right), n=0,1,2, \ldots . \tag{1}
\end{equation*}
$$

To find $\boldsymbol{y}(\mathbf{0 . 1})$:
Put $n=0$, equation (1) becomes

$$
y_{1}\left(x_{0}+h\right)=y_{0}+h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{h}{2} f\left(x_{0}, y_{0}\right)\right)
$$

We have $x_{0}=0, y_{0}=0, h=0.1 \& f(x, y)=1-y$

$$
\begin{aligned}
\therefore \quad y_{1}(0+0.1) & =0+(0.1) f\left(0+\frac{0.1}{2}, 0+\frac{0.1}{2} f(0,0)\right) \\
y_{1}(0.1) & =0+(0.1) f(0.05,0+0.05[1-0]) \\
& =(0.1) f(0.05,0+0.05[1]) \\
& =(0.1) f(0.05,0.05) \\
& =(0.1)[1-0.051] \\
& =(0.1)[0.95] \\
& =0.095
\end{aligned}
$$

$$
y_{1}(0.1)=0.095
$$

$$
y_{1}(0.1)=0.095 \quad\left[y\left(x_{1}\right)=y_{1}\right] \quad \Rightarrow x_{1}=0.1 \& y_{1}=0.095
$$

To find $\boldsymbol{y}(\mathbf{0 . 2})$:
Put $n=1$, equation (1) becomes

$$
y_{2}\left(x_{1}+h\right)=y_{1}+h f\left(x_{1}+\frac{h}{2}, y_{1}+\frac{h}{2} f\left(x_{1}, y_{1}\right)\right)
$$

We have $x_{1}=0.1, y_{1}=0.095, h=0.1 \& f(x, y)=1-y$

$$
\begin{aligned}
\therefore \quad y_{2}(0.1+0.1) & =0.095+(0.1) f\left(0.1+\frac{0.1}{2}, 0.095+\frac{0.1}{2} f(0.1,0.095)\right) \\
y_{2}(0.2) & =0.095+(0.1) f(0.15,0.095+0.05[1-0.095]) \\
& =0.095+(0.1) f(0.15,0.095+0.05[0.905]) \\
& =0.095+(0.1) f(0.15,0.14025) \\
& =0.095+(0.1)[1-0.14025]
\end{aligned}
$$

$$
=0.095+(0.1)[0.85975]
$$

$$
y_{2}(0.2)=0.18098
$$

$$
y_{2}(0.2)=0.18098 \quad\left[y\left(x_{2}\right)=y_{2}\right] \quad \Rightarrow x_{2}=0.2 \& y_{2}=0.18098
$$

To find $\boldsymbol{y}(\mathbf{0 . 3})$:
Put $n=2$, equation (1) becomes

$$
y_{3}\left(x_{2}+h\right)=y_{2}+h f\left(x_{2}+\frac{h}{2}, y_{2}+\frac{h}{2} f\left(x_{2}, y_{2}\right)\right)
$$

We have $x_{2}=0.2, y_{2}=0.180985, h=0.1 \& f(x, y)=1-y$
$\therefore \quad y_{3}(0.2+0.1)=0.18098+(0.1) f\left(0.2+\frac{0.1}{2}, 0.18098+\frac{0.1}{2} f(0.2,0.18098)\right)$

$$
\begin{aligned}
& y_{3}(0.3)=0.18098+(0.1) f(0.25,0.18098+0.05[1-0.18098]) \sim \\
&=0.18098+(0.1) f(0.25,0.18098+0.040951) \\
&=0.18098+(0.1) f(0.25,0.221931) \\
&=0.18098+(0.1)[1-0.221931] \\
&=0.18098+(0.1)[0.778069] \\
&=0.18098+0.0778069 \\
& y_{3}(0.3)= 0.2587869 \\
& \begin{array}{l}
y_{3}(0.3)=0.2587869 \quad\left[4\left(x_{3}\right)=y_{3}\right] \Rightarrow x_{3}=0.32 \& y_{3}=0.25878698 \\
\text { IMPROVED EULE'S METHOD }
\end{array}
\end{aligned}
$$

$$
\begin{equation*}
y_{n+1}\left(x_{n}+h\right)=y_{n}+\left(\frac{h}{2}\right)\left[f\left(x_{n}, y_{n}\right)+f\left(x_{n}+h, y_{n}+h f\left(x_{n}, y_{n}\right)\right)\right], n=0,1,2, \ldots . \tag{1}
\end{equation*}
$$

Example. 8 :

Find y at $x=0.1,0.2 \& 0.3$ given $y^{\prime}=1-y, y(0)=0$ by using Improved Euler's method.
Solution: Given

$$
y^{\prime}=f(x, y)=\frac{d y}{d x}=1-y \quad \text { and } \quad y(0)=0 \Rightarrow x_{0}=0, y_{0}=0 \quad\left[\text { Since } \quad y\left(x_{0}\right)=y_{0}\right]
$$

To find \boldsymbol{h} :
Since $y(0)=0 \Rightarrow y\left(x_{0}\right)=y_{0}$
Also we need to find y at $x=0.1,0.2 \& 0.3$
$\Rightarrow y\left(x_{1}\right)=?, \quad[y(0.1)=?] \quad \& \quad y\left(x_{2}\right)=?[y(0.2)=?] \ldots \quad \Rightarrow x_{1}=0.1, \quad x_{2}=0.2 \ldots$
$\therefore h=x_{1}-x_{0}=0.1-0.0=0.1 \quad$ (or) $h=x_{2}-x_{1}=0.2-0.1=0.1 \quad$ [Difference]
$\therefore h=0.1$
The Improved Euler's formula is

$$
\begin{equation*}
y_{n+1}\left(x_{n}+h\right)=y_{n}+\left(\frac{h}{2}\right)\left[f\left(x_{n}, y_{n}\right)+f\left(x_{n}+h, y_{n}+h f\left(x_{n}, y_{n}\right)\right)\right], n=0,1,2, \ldots . \tag{1}
\end{equation*}
$$

To find $\boldsymbol{y}(\mathbf{0 . 1})$:
Put $n=0$, equation (1) becomes

$$
y_{1}\left(x_{0}+h\right)=y_{0}+\left(\frac{h}{2}\right)\left[f\left(x_{0}, y_{0}\right)+f\left(x_{0}+h, y_{0}+h f\left(x_{0}, y_{0}\right)\right)\right]
$$

We have $x_{0}=0, y_{0}=0, h=0.1 \& f(x, y)=1-y$

$$
\begin{aligned}
\therefore \quad y_{1}(0+0.1) & =0+\left(\frac{0.1}{2}\right)[f(0,0)+f(0+0.1,0+0.1 f(0,0))] \\
y_{1}(0.1) & =0+(0.05)[f(0,0)+f(0+0.1,0+0.1 f(0,0))] \\
& =(0.05)[(1-0)+f(0.1,0.1[1-0])] \\
& =(0.05)[(1)+f(0.1,0.1[1])] \\
& =(0.05)[1+f(0.1,0.1)] \\
& =(0.05)[1+(1-0.1)] \\
& =(0.05)[1+0.9] \\
& =0.095
\end{aligned}
$$

$$
y_{1}(0.1)=0.095
$$

$$
\boldsymbol{y}_{1}(0.1)=0.095 \quad\left[\boldsymbol{y}\left(\boldsymbol{x}_{1}\right)=\boldsymbol{y}_{1}\right] \quad \Rightarrow x_{1}=0.1 \& \boldsymbol{y}_{1}=0.095
$$

To find $\boldsymbol{y}(\mathbf{0 . 2)}$:
Put $n=1$, equation (1) becomes

$$
y_{2}\left(x_{1}+h\right)=y_{1}+\left(\frac{h}{2}\right)\left[f\left(x_{1}, y_{1}\right)+f\left(x_{1}+h, y_{1}+h f\left(x_{1}, y_{1}\right)\right)\right]
$$

We have $x_{1}=0.1, y_{1}=0.095, h=0.1 \& f(x, y)=1-y$

$$
\begin{aligned}
\therefore \quad y_{2}(0.1+0.1) & =0.095+\left(\frac{0.1}{2}\right)[f(0.1,0.095)+f(0.1+0.1,0.095+0.1 f(0.1,0.095))] \\
y_{2}(0.2) & =0.095+(0.05)[(1-0.095)+f(0.1+0.1,0.095+0.1[1-0.095])]
\end{aligned}
$$

$$
\begin{aligned}
& =0.095+(0.05)[(0.905)+f(0.2,0.095+0.1[0.905])] \\
& =0.095+(0.05)[(0.905)+f(0.2,0.1855)] \\
& =0.095+(0.05)[0.905+(1-0.1855)] \\
& =0.095+(0.05)[0.905+0.8145] \\
& =0.095+(0.05)[1.7195]
\end{aligned}
$$

$$
y_{2}(0.2)=0.180975
$$

$$
\boldsymbol{y}_{2}(0.2)=0.180975 \quad\left[\boldsymbol{y}\left(\boldsymbol{x}_{2}\right)=\boldsymbol{y}_{2}\right] \quad \Rightarrow x_{2}=0.2 \& \boldsymbol{y}_{2}=0.180975
$$

To find $\boldsymbol{y}(\mathbf{0 . 3})$:
Put $n=2$, equation (1) becomes

$$
y_{3}\left(x_{2}+h\right)=y_{2}+\left(\frac{h}{2}\right)\left[f\left(x_{2}, y_{2}\right)+f\left(x_{2}+h, y_{2}+h f\left(x_{2}, y_{2}\right)\right)\right]
$$

We have $\left.x_{2}=0.1, y_{2}=0.180975, h=0.1 \& f(x, y)=1\right\}^{y}$

$$
\begin{aligned}
\therefore \quad y_{3}(0.2+0.1) & =0.095+\left(\frac{0.1}{2}\right)[f(0.2,0.180975)+f(0.2+0.1,0.180975+0.1 f(0.1,0.180975))] \\
y_{3}(0.3) & =0.180975+(0.05)[(1-0.180975)+f(0.3,0.180975+0.1[1-0.180975])] \\
& =0.180975+(0.05)[(0.819025)+f(0.3,0.180975+0.1[0.819025])] \\
& =0.180975+(0.05)[(0.819025)+f(0.3,0.2628775)] \\
& =0.180975+(0.05)[0.819025+(1-0.2628775)] \\
& =0.180975+(0.05)] 0.819025+0.7371225] \\
& =0.180975+(0.05)[1.5561475] \\
& =0.180975+0.077807375
\end{aligned}
$$

$$
y_{3}(0.3)=0.258782 \quad\left[y\left(x_{3}\right)=y_{3}\right] \Rightarrow x_{3}=0.3 \& y_{3}=0.258782
$$

Example.9: Given $y^{\prime}=x^{2}-y, y(0)=1$ Find correct to four decimal places the value of $y(0.1)$ by using Improved Euler's method.

Solution: Given

$$
y^{\prime}=f(x, y)=\frac{d y}{d x}=x^{2}-y \quad \text { and } \quad y(0)=1 \quad \Rightarrow x_{0}=0, y_{0}=1 \quad\left[\text { Since } \quad y\left(x_{0}\right)=y_{0}\right]
$$

To find \boldsymbol{h} :

Since $y(0)=0 \Rightarrow y\left(x_{0}\right)=y_{0}$

Also we need to find $y(0.1)$
$\Rightarrow y\left(x_{1}\right)=?,[y(0.1)=?] \quad \Rightarrow x_{1}=0.1$,
$\therefore h=x_{1}-x_{0}=0.1-0.0=0.1 \quad$ [Difference]
$\therefore h=0.1$
The Improved Euler's formula is

$$
\begin{equation*}
y_{n+1}\left(x_{n}+h\right)=y_{n}+\left(\frac{h}{2}\right)\left[f\left(x_{n}, y_{n}\right)+f\left(x_{n}+h, y_{n}+h f\left(x_{n}, y_{n}\right)\right)\right], n=0,1,2, \ldots . \tag{1}
\end{equation*}
$$

To find $\boldsymbol{y}(\mathbf{0 . 1})$:
Put $n=0$, equation (1) becomes

$$
y_{1}\left(x_{0}+h\right)=y_{0}+\left(\frac{h}{2}\right)\left[f\left(x_{0}, y_{0}\right)+f\left(x_{0}+h, y_{0}+h f\left(x_{0}, y_{0}\right)\right)\right]
$$

We have $x_{0}=0, y_{0}=1, h=0.1 \& f(x, y)=x^{2}-y$

$$
\begin{aligned}
\therefore \quad y_{1}(0+0.1) & =1+\left(\frac{0.1}{2}\right)[f(0,1)+f(0+0.1,1+0.1 f(0,1))] \\
y_{1}(0.1) & =1+(0.05)[f(0,1)+f(0.1,1+0.1 f(0,1))] \\
& \left.=1+(0.05)\left[\left(0^{2}-1\right)+f\left(0.1,1+0.10^{2}-1\right]\right)\right] \\
& =1+(0.05)[(-1)+f(01,1+0.1[-1])] \\
& =1+(0.05)[-1+f(0.1,0.9)] \\
& =1+(0.05)\left[-1+\left\langle(0 .)^{2}-(0.9)\right\rangle\right] \\
& =1+(0.05)[-1+\langle 0.01-0.9)] \\
& =1+(0.05)[-1-0.89] \\
& =1+(0.05)[-1.89] \\
& =1-0.0945
\end{aligned}
$$

$$
y_{1}(0.1)=0.9055
$$

$$
y_{1}(0.1)=0.9055 \quad\left[y\left(x_{1}\right)=y_{1}\right] \Rightarrow x_{1}=0.1 \& y_{1}=0.9055
$$

Example. 10:
Using Improved Euler's method find y at $x=0.1$ \& at $x=0.2$ Given $y^{\prime}=y-\frac{2 x}{y}, y(0)=1$
Solution: Given

$$
y^{\prime}=f(x, y)=\frac{d y}{d x}=y-\frac{2 x}{y} \quad \text { and } \quad y(0)=1 \quad \Rightarrow \quad x_{0}=0, y_{0}=1 \quad\left[\text { Since } \quad y\left(x_{0}\right)=y_{0}\right]
$$

To find \boldsymbol{h} :

$$
\text { Since } y(0)=0 \Rightarrow y\left(x_{0}\right)=y_{0}
$$

Also we need to find $y(0.1) \& y(0.2)$
$\Rightarrow y\left(x_{1}\right)=?,[y(0.1)=?] \quad \Rightarrow x_{1}=0.1$,
$\therefore h=x_{1}-x_{0}=0.1-0.0=0.1 \quad$ [Difference]
$\therefore h=0.1$
The Improved Euler's formula is

$$
y_{n+1}\left(x_{n}+h\right)=y_{n}+\left(\frac{h}{2}\right)\left[f\left(x_{n}, y_{n}\right)+f\left(x_{n}+h, y_{n}+h f\left(x_{n}, y_{n}\right)\right)\right], n=0,1,2, \ldots \ldots
$$

To find $\boldsymbol{y}(\mathbf{0 . 1})$:
Put $n=0$, equation (1) becomes

$$
y_{1}\left(x_{0}+h\right)=y_{0}+\left(\frac{h}{2}\right)\left[f\left(x_{0}, y_{0}\right)+f\left(x_{0}+h, y_{0}+h f\left(x_{0}, y_{0}\right)\right)\right]
$$

We have $x_{0}=0, y_{0}=1, h=0.1 \& f(x, y)=x^{2}-$ н

$$
\begin{aligned}
\therefore \quad y_{1}(0+0.1) & \left.=1+\left(\frac{0.1}{2}\right)[f(0,1)+f(0+0.1)+0.1 f(0,1))\right] \\
y_{1}(0.1) & =1+(0.05)[f(0,1) f f(0.1,1+0.1 f(0,1))] \\
& =1+(0.05)\left[\left(1-\frac{2(0)}{1}\right)+f\left(0.1,1+0.1\left[1-\frac{2(0)}{1}\right]\right)\right] \\
& =1+(0.05)[(1)+f(0.1,1+0.1[1])] \\
& =1+(0.05)[1+f(0.1,1.1)] \\
& =1+(0.05)\left[1+\left(1.1-\frac{2(0.1)}{1.1}\right)\right] \\
& =1+(0.05)[1+(0.91818)] \\
& =1+(0.05)[1.91818] \\
& =1+0.095909 \\
y_{1}(0.1) & =1.095909
\end{aligned}
$$

$$
y_{1}(0.1)=1.095909 \quad\left[y\left(x_{1}\right)=y_{1}\right] \Rightarrow x_{1}=0.1 \& y_{1}=1.095909
$$

To find $\boldsymbol{y}(\mathbf{0 . 2})$:
Put $n=1$, equation (1) becomes

$$
y_{2}\left(x_{1}+h\right)=y_{1}+\left(\frac{h}{2}\right)\left[f\left(x_{1}, y_{1}\right)+f\left(x_{1}+h, y_{1}+h f\left(x_{1}, y_{1}\right)\right)\right]
$$

We have $x_{1}=0.1, y_{1}=1.095909, h=0.1 \& f(x, y)=x^{2}-y$

$$
\begin{aligned}
& \therefore y_{2}(0.1+0.1)=1.095909+\left(\frac{0.1}{2}\right)[f(0.1,1.095909)+f(0.1+0.1,1.095909+0.1 f(0.1,1.095909))] \\
& y_{2}(0.2)=1.095909+(0.05)[f(0.1,1.095909)+f(0.2,1.095909+0.1 f(0.1,1.095909))] \\
& =1.095909+(0.05)\left[\left(1.095909-\frac{2(0.1)}{1.095909}\right)+f\left(0.1,1+0.1\left[1.095909-\frac{2(0.1)}{1.095909}\right]\right)\right] \\
& =1.095909+(0.05)[(0.91341)+f(0.1,1+0.1[0.91341])] \\
& =1.095909+(0.05)[0.91341+f(0.1,1.091341)] \\
& \begin{array}{l}
=1.095909+(0.05)\left[0.91341+\left(1.091341-\int \frac{2(0.1)}{1.091341}\right)\right] \\
=1.095909+(0.05)[0.91341+(0.90808)]
\end{array} \\
& =1.095909+(0.05)[1.821491] \\
& =1.095909+0.091074 \\
& y_{2}(0.2)=1.18698 \\
& y_{2}(0.2)=1.18698 \\
& \text { MILNE'S PREDICTOR CORRCETOR METHOD }
\end{aligned}
$$

Predictor :

$$
y_{n+1, P}\left(x_{n}+h\right)=y_{n-3}+\frac{4 h}{3}\left[2 y_{n-2}^{\prime}-y_{n-1}^{\prime}+2 y_{n}^{\prime}\right]
$$

Corrector :

$$
y_{n+1, c}\left(x_{n}+h\right)=y_{n-1}+\frac{h}{3}\left[y_{n-1}^{\prime}+4 y_{n}^{\prime}+y_{n+1}^{\prime}\right]
$$

Example.1:
Given $y^{\prime}=x^{3}+y, y(0)=2$. Also given $y(0.2)=2.073, y(0.4)=2.452$ and $y(0.6)=3.023$.
Find $y(0.8)$ By Using Milne's Method
Solution: Given $y^{\prime}=f(x, y)=\frac{d y}{d x}=x^{3}+y \quad \& \quad y(0)=2 \quad \Rightarrow x_{0}=0, y_{0}=2 \quad\left[\right.$ Since $\left.y\left(x_{0}\right)=y_{0}\right]$

$y(0)=2$	$y\left(x_{0}\right)=y_{0}$	$x_{0}=0$	$y_{0}=2$
$y(0.2)=2.073$	$y\left(x_{1}\right)=y_{1}$	$x_{1}=0.2$	$y_{1}=2.073$

$y(0.4)=2.452$	$y\left(x_{2}\right)=y_{2}$	$x_{2}=0.4$	$y_{2}=2.452$
$y(0.6)=3.023$	$y\left(x_{3}\right)=y_{3}$	$x_{3}=0.6$	$y_{3}=3.023$

Here $h=0.2$ and $n=3$ [Highest value of x is $x_{3} . \therefore n=3$]
The Milne's Predictor formula is

$$
\begin{equation*}
y_{n+1, P}\left(x_{n}+h\right)=y_{n-3}+\frac{4 h}{3}\left[2 y_{n-2}^{\prime}-y_{n-1}^{\prime}+2 y_{n}^{\prime}\right] \tag{1}
\end{equation*}
$$

Put $n=3$ in equation (1), we have

$$
\begin{equation*}
y_{4, P}\left(x_{3}+h\right)=y_{0}+\frac{4 h}{3}\left[2 y_{1}^{\prime}-y_{2}^{\prime}+2 y_{3}^{\prime}\right] \tag{2}
\end{equation*}
$$

Given $y^{\prime}=x^{3}+y$

$x_{1}=0.2$ $y_{1}=2.073$ $y_{1}^{\prime}=x_{1}^{3}+y_{1}$ $y_{1}^{\prime}=(0.2)^{3}+(2.073)$ $y_{1}^{\prime}=2.081$ $x_{2}=0.4$ $y_{2}=2.452$ $y_{2}^{\prime}=x_{2}^{3}+y_{2}$ $y_{2}^{\prime}=(0.4)^{3}+(2.452)$ $y_{2}^{\prime}=2.516$ $x_{3}=0.6$ $y_{3}=3.023$ $y_{3}^{\prime}=x_{3}^{3}+y_{2}$ $y_{3}^{\prime}=(0.6)^{3}+(3.023)$ $y_{3}^{\prime}=3.239$

$$
\begin{aligned}
y_{4, P}(0.6+0.2) & =2+\frac{4(0.2)}{3}[2(2.081)-(2.516)+2(3.239)] \\
y_{4, P}(0.8) & =2+\frac{0.8}{3}[8.124]=2+2.1664 \\
\boldsymbol{y}_{4, P}(\mathbf{0 . 8}) & =4.1664 \quad\left[\boldsymbol{y}\left(\boldsymbol{x}_{4}\right)=\boldsymbol{y}_{4}, \quad \boldsymbol{x}_{4}=\mathbf{0 . 8} \& \boldsymbol{y}_{4}=4.1664\right]
\end{aligned}
$$

The Milne's Corrector formula is

$$
\begin{equation*}
y_{n+1, c}\left(x_{n}+h\right)=y_{n-1}+\frac{h}{3}\left[y_{n-1}^{\prime}+4 y_{n}^{\prime}+y_{n+1}^{\prime}\right] \tag{3}
\end{equation*}
$$

Put $n=3$ in equation (3), we have

$$
\begin{equation*}
y_{4, C}\left(x_{3}+h\right)=y_{2}+\frac{h}{3}\left[y_{2}^{\prime}+4 y_{3}^{\prime}+y_{4}^{\prime}\right] \tag{3}
\end{equation*}
$$

$x_{4}=0.8$	$y_{4}=4.1664$	$y_{4}^{\prime}=x_{4}^{3}+y_{4}$	$y_{4}^{\prime}=(0.8)^{3}+(4.1664)$	$y_{4}^{\prime}=4.6784$

Equation (4) becomes

$$
\begin{aligned}
y_{4, C}(0.6+0.2) & =2.452+\frac{(0.2)}{3}[2.516+4(3.239)+4.6784] \\
y_{4, C}(0.8) & =2.452+\frac{(0.2)}{3}[20.1504]
\end{aligned}
$$

$$
y_{4, C}(0.8)=3.79536 \quad\left[y\left(x_{4}\right)=y_{4}, x_{4}=0.8 \& y_{4}=3.79536\right]
$$

Result:

$$
y_{4, P}(0.8)=4.1664 \quad \& \quad y_{4, c}(0.8)=3.79536
$$

Example. 2 :
Determine the value of $y(0.4)$ Using Milne's Method, given $y^{\prime}=x y+y^{2}, y(0)=1$.
Use Taylor series to get the values of $y(0.1), y(0.2) \& y(0.3)$.

Solution :

Given $y^{\prime}=x y+y^{2} \quad \& \quad y(0)=1 \Rightarrow x_{0}=0, \quad y_{0}=1 \quad$ Since $\quad\left[y\left(x_{0}\right)=y_{0}\right]$
Taylor series formula is
$y(x)=y_{0}+\frac{\left(x-x_{0}\right)}{1!} y_{0}^{\prime}+\frac{\left(x-x_{0}\right)^{2}}{2!} y_{0}^{\prime \prime}+\frac{\left(x-x_{0}\right)^{3}}{3!} y_{0}^{\prime \prime \prime}+\ldots$

	$\cdots \mathrm{N}$	
$y^{\prime}=x y+y^{2}$	$y_{0}^{\prime}=x_{0} y_{0}+y_{0}^{2}=0(1)+1^{2}$	$y_{0}^{\prime}=1$
$y^{\prime \prime}=x y^{\prime}+y+2 y y^{\prime}$	$\begin{aligned} & y_{0}^{\prime \prime}=x_{0} y_{0}^{\prime}+y_{0}+2 y_{0} y_{0}^{\prime} \\ & =0(+1)+1+2(1)(1)=3 \end{aligned}$	$y_{0}^{\prime \prime}=3$
$\begin{gathered} y^{\prime \prime \prime}=x y^{\prime \prime}+y^{\prime}+y^{\prime}+2 y y^{\prime \prime}+2 y^{\prime} y^{\prime} \\ y^{\prime \prime \prime}=x y^{\prime \prime}+2 y^{\prime}+2 y y^{\prime \prime}+2\left(y^{\prime}\right)^{2} \end{gathered}$	$\begin{aligned} y_{0}^{\prime \prime} & =x_{0}^{\prime} y_{0}^{\prime \prime}+y_{0}^{\prime \prime}+2 y_{0} y_{0}^{\prime \prime}+2\left(y_{0}^{\prime}\right)^{2} \\ & =0(3)+2(1)+2(1)(3)+2(1)^{2} \end{aligned}$	$y_{0}^{\prime \prime \prime}=10$

Therefore equation (1) becomes,
$y(x)=y_{0}+\frac{\left(x-x_{0}\right)}{1!} y_{0}^{\prime}+\frac{\left(x-x_{0}\right)^{2}}{2!} y_{0}^{\prime \prime}+\frac{\left(x-x_{0}\right)^{3}}{3!} y_{0}^{\prime \prime \prime} \ldots$

$$
=1+\frac{(x-0)}{1}(1)+\frac{(x-0)^{2}}{2}(3)+\frac{(x-0)^{3}}{6}(10)+\cdots
$$

$y(x)=1+x+\frac{3 x^{2}}{2}+\frac{5 x^{3}}{3}$
To find $y(0.1)[y$ at $x=0.1]$
$\therefore \quad y(0.1)=1+0.1+\frac{3(0.1)^{2}}{2}+\frac{5(0.1)^{3}}{3}=1+0.1+0.015+0.0016667$
$\therefore \quad y(0.1)=1.1167$
To find $y(0.2)[y$ at $x=0.2]$
$\therefore \quad y(0.2)=1+0.2+\frac{3(0.2)^{2}}{2}+\frac{5(0.2)^{3}}{3}=1+0.2+0.06+0.013333$
$\therefore \quad y(0.2)=1.2733$
To find $y(0.3)[y$ at $x=0.3]$

$$
\begin{aligned}
& \therefore \quad y(0.3)=1+0.3+\frac{3(0.3)^{2}}{2}+\frac{5(0.3)^{3}}{3}=1+0.3+0.135+0.045 \\
& \therefore \quad y(0.3)=1.4800
\end{aligned}
$$

To find $\boldsymbol{y}(\mathbf{0 . 4}):$ Given

$$
y^{\prime}=f(x, y)=\frac{d y}{d x}=x y+y^{2} \quad \text { and } \quad y(0)=1 \Rightarrow x_{0}=0, y_{0}=1 \quad\left[\text { Since } \quad y\left(x_{0}\right)=y_{0}\right]
$$

$y(0)=2$	$y\left(x_{0}\right)=y_{0}$	$x_{0}=0$	$\hat{y}_{0}=1$
$y(0.1)=2.073$	$y\left(x_{1}\right)=y_{1}$	$x_{1}=0.1$	$y_{1}=1.1167$
$y(0.2)=2.452$	$y\left(x_{2}\right)=y_{2}$	$x_{2}=0.2$	$y_{2}=1.2733$
$y(0.3)=3.023$	$y\left(x_{3}\right)=y_{3}$	$x_{3}=0.3$	$y_{3}=1.4800$

Here $h=0.1$ and $n=3$ [Highest value of x is $x_{3} \quad \therefore n=3$]
The Milne's Predictor formula is

$$
y_{n+1, P}\left(x_{n}+h\right)=y_{n-3}+\frac{4 h}{3}\left[2 y_{n-2}^{\prime}-y_{n-1}^{\prime}+2 y_{n}^{\prime}\right]
$$

Put $\mathrm{n}=\mathbf{3}$ in equation (1), we have

$$
\begin{equation*}
y_{4, P}\left(x_{3}+h\right)=y_{0}+\frac{4 h}{3}\left[2 y_{1}^{\prime}-y_{2}^{\prime}+2 y_{3}^{\prime}\right] \tag{2}
\end{equation*}
$$

Given $\quad y^{\prime}=x y+y^{2}$

$x_{1}=0.1$	$y_{1}=1.1167$	$y_{1}^{\prime}=x_{1} y_{1}+y_{1}^{2}$	$y_{1}^{\prime}=(0.1)(1.1167)+(1.1167)^{2}$	$y_{1}^{\prime}=1.35869$
$x_{2}=0.2$	$y_{2}=1.2733$	$y_{2}^{\prime}=x_{2} y_{2}+y_{2}^{2}$	$y_{2}^{\prime}=(0.2)(1.2733)+(1.2733)^{2}$	$y_{2}^{\prime}=1.8759$
$x_{3}=0.3$	$y_{3}=1.4800$	$y_{3}^{\prime}=x_{3} y_{3}+y_{3}^{2}$	$y_{3}^{\prime}=(0.3)(1.4800)+(1.4800)^{2}$	$y_{3}^{\prime}=2.6344$

Equation (2) becomes

$$
\begin{aligned}
y_{4, P}(0.3+0.1) & =1+\frac{4(0.1)}{3}[2(1.35869)-(1.8759)+2(2.6344)] \\
y_{4, P}(0.4) & =1+\frac{0.4}{3}[6.11028]=1+0.814704
\end{aligned}
$$

$$
y_{4, P}(0.4)=1.8147 \quad\left[y\left(x_{4}\right)=y_{4}, \quad x_{4}=0.4 \& y_{4}=1.8147\right]
$$

The Milne's Corrector formula is

$$
\begin{equation*}
y_{n+1, c}\left(x_{n}+h\right)=y_{n-1}+\frac{h}{3}\left[y_{n-1}^{\prime}+4 y_{n}^{\prime}+y_{n+1}^{\prime}\right] \tag{3}
\end{equation*}
$$

Put $n=3$ in equation (3), we have

$$
y_{4, C}\left(x_{3}+h\right)=y_{2}+\frac{h}{3}\left[y_{2}^{\prime}+4 y_{3}^{\prime}+y_{4}^{\prime}\right]
$$

$x_{4}=0.4$	$y_{4}=1.8147$	$y_{4}^{\prime}=x_{4} y_{4}+y_{4}^{2}$	$y_{4}^{\prime}=(0.4)(1.8147)+(1.8147)^{2}$	$y_{4}^{\prime}=4.01902$

Equation (4) becomes

$$
\begin{aligned}
y_{4, C}(0.3+0.1) & =1.2733+\frac{(0.1)}{3}[1.8759+4(2.6344)+4.01902] \\
y_{4, C}(0.4) & =1.2733+\frac{(0.1)}{3}[16.43252]=1.2733+0.54775 \\
\boldsymbol{y}_{4, C}(\mathbf{0 . 4}) & =1.82105 \quad\left[\boldsymbol{y}\left(\boldsymbol{x}_{4}\right)=\boldsymbol{y}_{4}, \quad \boldsymbol{x}_{4}=\mathbf{0 . 4} \& \boldsymbol{y}_{4}=\mathbf{1 8 2 1 0 5}\right]
\end{aligned}
$$

Result:

$$
y_{4, P}(0.4)=1.8147 \quad \& \quad y_{4, c}(0.4)=1.82105
$$

Example. 2 :

Using Milne's Method Find $y(4.4)$ Given $5 x y^{\prime}+y^{2}-2=0$ given $y(4)=1, Y(4.1)=1.0049$, $y(4.2)=1.0097 \& y(4.3)=1.0143$

Solution: Given $5 x y^{\prime}+y^{2}-2=0 \Rightarrow 5 x y^{\prime}=2-y^{2} \quad \Rightarrow \quad y^{\prime}=\frac{2-y^{2}}{5 x}$
$y^{\prime}=f(x, y)=\frac{d y}{d x}=\frac{2-y^{2}}{5 x}$

$y(4)=1$	$y\left(x_{0}\right)=y_{0}$	$x_{0}=4$	$y_{0}=1$
$y(4.1)=2.073$	$y\left(x_{1}\right)=y_{1}$	$x_{1}=4.1$	$y_{1}=1.0049$
$y(4.2)=2.452$	$y\left(x_{2}\right)=y_{2}$	$x_{2}=4.2$	$y_{2}=1.0097$
$y(4.3)=3.023$	$y\left(x_{3}\right)=y_{3}$	$x_{3}=4.3$	$y_{3}=1.0143$

Here $h=0.1$ and $n=3$ [Highest value of x is $x_{3} . \therefore n=3$]
The Milne's Predictor formula is

$$
\begin{equation*}
y_{n+1, P}\left(x_{n}+h\right)=y_{n-3}+\frac{4 h}{3}\left[2 y_{n-2}^{\prime}-y_{n-1}^{\prime}+2 y_{n}^{\prime}\right] \tag{1}
\end{equation*}
$$

Put $\mathrm{n}=\mathbf{3}$ in equation (1), we have

$$
\begin{equation*}
y_{4, P}\left(x_{3}+h\right)=y_{0}+\frac{4 h}{3}\left[2 y_{1}^{\prime}-y_{2}^{\prime}+2 y_{3}^{\prime}\right] \tag{2}
\end{equation*}
$$

Given $y^{\prime}=\frac{2-y^{2}}{5 x}$

$x_{1}=4.1$	$y_{1}=1.0049$	$y_{1}^{\prime}=\frac{2-y_{1}^{2}}{5 x_{1}}$	$y_{1}^{\prime}=\frac{2-(1.0049)^{2}}{5(4.1)}$	$y_{1}^{\prime}=0.0493$
$x_{2}=4.2$	$y_{2}=1.0097$	$y_{2}^{\prime}=\frac{2-y_{2}^{2}}{5 x_{2}}$	$y_{2}^{\prime}=\frac{2-(1.0097)^{2}}{5(4.2)}$	$y_{2}^{\prime}=0.0467$
$x_{3}=4.3$	$y_{3}=1.0143$	$y_{3}^{\prime}=\frac{2-y_{3}^{2}}{5 x_{3}}$	$y_{3}^{\prime}=\frac{2-(1.0143)^{2}}{5(4.3)}$	$y_{3}^{\prime}=0.0452$

Equation (2) becomes

$$
\begin{aligned}
y_{4, P}\left(x_{3}+h\right) & =y_{0}+\frac{4 h}{3}\left[2 y_{1}^{\prime}-y_{2}^{\prime}+2 y_{3}^{\prime}\right] \\
y_{4, P}(4.3+0.1) & =1+\frac{4(0.1)}{3}[2(0.0493)-(0.0467)+2(0.0452)] \\
y_{4, P}(4.4) & =1+\frac{0.4}{3}[0.1423]=1+0.0189733 \\
y_{4, P}(4.4) & \left.=1.01897 \quad\left[\boldsymbol{y}\left(\boldsymbol{x}_{4}\right)=\boldsymbol{y}_{4}, \quad \boldsymbol{x}_{4}=4\right) 4 \boldsymbol{y}_{4}=1.01897\right]
\end{aligned}
$$

The Milne's Corrector formula is

$$
\begin{equation*}
y_{n+1, c}\left(x_{n}+h\right)=y_{n-1}+\frac{h}{3}\left[y_{n-1}^{\prime}+4 y_{n}^{\prime}+y_{n+1}^{\prime}\right] \tag{3}
\end{equation*}
$$

Put $\mathbf{n}=\mathbf{3}$ in equation (3), we have

$$
\begin{equation*}
y_{4, C}\left(x_{3}+h\right)=y_{2}+\frac{h}{3}\left[y_{2}^{\prime}+4 y_{3}^{\prime}+y_{4}^{\prime}\right] \tag{3}
\end{equation*}
$$

$x_{4}=4.4$	$y_{4}=1.01897$	$y_{4}^{\prime}=\frac{2-y_{4}^{2}}{5 x_{4}}$	$y_{4}^{\prime}=\frac{2-(1.01897)^{2}}{5(4.4)}$	$y_{4}^{\prime}=0.0437$

Equation (4) becomes

$$
\begin{aligned}
y_{4, C}(4.3+0.1) & =1.0097+\frac{(0.1)}{3}[0.0467+4(0.0452)+0.0437] \\
y_{4, C}(4.4) & =1.0097+\frac{(0.1)}{3}[0.2712]=1.0097+0.00904 \\
y_{4, C}(4.4) & =1.01874 \quad\left[\boldsymbol{y}\left(\boldsymbol{x}_{4}\right)=\boldsymbol{y}_{4}, \quad \boldsymbol{x}_{4}=4.4 \& \boldsymbol{y}_{4}=1.01874\right]
\end{aligned}
$$

Result:

$$
y_{4, P}(4.4)=1.01897 \quad \& \quad y_{4, C}(4.4)=1.01874
$$

Example. 3 :
Solve $y^{\prime}=x-y^{2}, \quad 0 \leq x \leq 1, y(0)=0, y(0.2)=0.02, y(0.4)=0.0795, y(0.6)=0.1762$ by Milne's Method to find $y(0.8) \& y(1)$.

Solution: Given $y^{\prime}=x-y^{2}$

$y(0)=1$	$y\left(x_{0}\right)=y_{0}$	$x_{0}=0$	$y_{0}=0$
$y(0.2)=0.02$	$y\left(x_{1}\right)=y_{1}$	$x_{1}=0.2$	$y_{1}=0.02$
$y(0.4)=0.0795$	$y\left(x_{2}\right)=y_{2}$	$x_{2}=0.4$	$y_{2}=0.0795$
$y(0.6)=0.1762$	$y\left(x_{3}\right)=y_{3}$	$x_{3}=0.6$	$y_{3}=0.1762$

Here $h=0.2$ and $n=3$ [Highest value of x is $x_{3} . \therefore n=3$]
The Milne's Predictor formula is

$$
y_{n+1, P}\left(x_{n}+h\right)=y_{n-3}+\frac{4 h}{3}\left[2 y_{n-2}^{\prime}-y_{n-1}^{\prime}+2 y_{n}^{\prime}\right]
$$

To Find $y(0.8)$:
Put $\mathbf{n}=\mathbf{3}$ in equation (1), we have

$$
y_{4, P}\left(x_{3}+h\right)=y_{0}+\frac{4 h}{3}\left[2 y_{1}^{\prime}-y_{2}^{\prime}+2 y_{3}^{\prime} \propto\right.
$$

Given $y^{\prime}=x-y^{2}$

$x_{1}=0.2$	$y_{1}=0.02$	$y_{1}^{\prime}=x_{1}-y_{1}^{2}$	$y_{1}^{\prime}=(0.2)-(0.02)^{2}$	$y_{1}^{\prime}=0.1996$
$x_{2}=0.4$	$y_{2}=0.0795$	$y_{2}^{\prime}=x_{2}-y_{2}^{2}$	$y_{2}^{\prime}=(0.4)-(0.0795)^{2}$	$y_{2}^{\prime}=0.3937$
$x_{3}=0.6$	$y_{3}=0.1762$	$y_{3}^{\prime}=x_{3}-y_{3}^{2}$	$y_{3}^{\prime}=(0.6)-(0.1762)^{2}$	$y_{3}^{\prime}=0.5690$

Equation (2) becomes

$$
\begin{aligned}
y_{4, P}\left(x_{3}+h\right) & =y_{0}+\frac{4 h}{3}\left[2 y_{1}^{\prime}-y_{2}^{\prime}+2 y_{3}^{\prime}\right] \\
y_{4, P}(0.6+0.2) & =0+\frac{4(0.2)}{3}[2(0.1996)-(0.3937)+2(0.5690)] \\
y_{4, P}(0.8) & =\frac{0.8}{3}[1.1435] \\
\boldsymbol{y}_{4, P}(0.8) & =0.3049 \quad\left[\boldsymbol{y}\left(\boldsymbol{x}_{4}\right)=\boldsymbol{y}_{4}, \quad \boldsymbol{x}_{4}=\mathbf{0 . 8} \quad \& \quad \boldsymbol{y}_{4}=0.3049\right]
\end{aligned}
$$

The Milne's Corrector formula is

$$
\begin{equation*}
y_{n+1, c}\left(x_{n}+h\right)=y_{n-1}+\frac{h}{3}\left[y_{n-1}^{\prime}+4 y_{n}^{\prime}+y_{n+1}^{\prime}\right] \tag{3}
\end{equation*}
$$

Put $\boldsymbol{n}=\mathbf{3}$ in equation (3), we have

$$
y_{4, C}\left(x_{3}+h\right)=y_{2}+\frac{h}{3}\left[y_{2}^{\prime}+4 y_{3}^{\prime}+y_{4}^{\prime}\right]
$$

$x_{4}=0.8$	$y_{4}=0.3049$	$y_{4}^{\prime}=x_{4}-y_{4}^{2}$	$y_{4}^{\prime}=0.8-(0.3049)^{2}$	$y_{4}^{\prime}=0.707$

Equation (4) becomes

$$
\begin{aligned}
y_{4, c}(0.6+0.2) & =0.0795+\frac{(0.2)}{3}[0.3937+4(0.5690)+0.707] \\
y_{4, C}(0.8) & =0.07957+\frac{(0.2)}{3}[3.376] \\
\boldsymbol{y}_{4, c}(\mathbf{0 . 8}) & =\mathbf{0 . 3 0 4 6} \quad\left[\boldsymbol{y}\left(\boldsymbol{x}_{4}\right)=\boldsymbol{y}_{4}, \quad \boldsymbol{x}_{4}=\mathbf{0 . 8} \& \boldsymbol{y}_{4}=0.3046\right]
\end{aligned}
$$

To Find $y(1.0)$:

Put $\mathbf{n}=\mathbf{3}$ in equation (1), we have

$$
y_{4, P}\left(x_{3}+h\right)=y_{0}+\frac{4 h}{3}\left[2 y_{1}^{\prime}-y_{2}^{\prime}+2 y_{3}^{\prime}\right]
$$

Given $y^{\prime}=x-y^{2}$

$x_{1}=0.2$	$y_{1}=0.02$	$y_{1}^{\prime}=x_{1}-y_{1}^{2}$	$y_{1}^{\prime}=(0.2)-(0.02)^{2}$	$y_{1}^{\prime}=0.1996$
$x_{2}=0.4$	$y_{2}=0.0795$	$y_{3}^{\prime}=x_{2}-y_{2}^{2}$	$y_{2}^{\prime}=(0.4)-(0.0795)^{2}$	$y_{2}^{\prime}=0.3937$
$x_{3}=0.6$	$y_{3}=0.1762$	$0 y_{3}^{\prime}-x_{3}-y_{3}^{2}$	$y_{3}^{\prime}=(0.6)-(0.1762)^{2}$	$y_{3}^{\prime}=0.5690$

Equation (2) becomes

$$
\begin{aligned}
y_{4, P}\left(x_{3}+h\right) & =y_{0}+\frac{4 h}{3}\left[2 y_{1}^{\prime}-y_{2}^{\prime}+2 y_{3}^{\prime}\right] \\
y_{4, P}(0.6+0.2) & =0+\frac{4(0.2)}{3}[2(0.1996)-(0.3937)+2(0.5690)] \\
y_{4, P}(0.8) & =\frac{0.8}{3}[1.1435] \\
\boldsymbol{y}_{4, P}(0.8) & =0.3049 \quad\left[\boldsymbol{y}\left(\boldsymbol{x}_{4}\right)=\boldsymbol{y}_{4}, \quad \boldsymbol{x}_{4}=0.8 \quad \& \boldsymbol{y}_{4}=0.3049\right]
\end{aligned}
$$

The Milne's Corrector formula is

$$
\begin{equation*}
y_{n+1, C}\left(x_{n}+h\right)=y_{n-1}+\frac{h}{3}\left[y_{n-1}^{\prime}+4 y_{n}^{\prime}+y_{n+1}^{\prime}\right] \tag{3}
\end{equation*}
$$

Put $\mathrm{n}=\mathbf{3}$ in equation (3), we have

$$
\begin{equation*}
y_{4, C}\left(x_{3}+h\right)=y_{2}+\frac{h}{3}\left[y_{2}^{\prime}+4 y_{3}^{\prime}+y_{4}^{\prime}\right] \tag{3}
\end{equation*}
$$

$x_{4}=0.8$	$y_{4}=0.3049$	$y_{4}^{\prime}=x_{4}-y_{4}^{2}$	$y_{4}^{\prime}=0.8-(0.3049)^{2}$	$y_{4}^{\prime}=0.707$

Equation (4) becomes

$$
\begin{aligned}
y_{4, C}(0.6+0.2) & =0.0795+\frac{(0.2)}{3}[0.3937+4(0.5690)+0.707] \\
y_{4, C}(0.8) & =0.07957+\frac{(0.2)}{3}[3.376] \\
\boldsymbol{y}_{4, c}(\mathbf{0 . 8}) & =\mathbf{0 . 3 0 4 6} \quad\left[\boldsymbol{y}\left(\boldsymbol{x}_{4}\right)=\boldsymbol{y}_{4}, \quad \boldsymbol{x}_{4}=\mathbf{0 . 8} \& \boldsymbol{y}_{4}=\mathbf{0 . 3 0 4 6}\right]
\end{aligned}
$$

Result:

$$
y_{4, P}(0.8)=0.3049 \quad \& \quad y_{4, C}(0.8)=0.3046
$$

ADAMM'S BASHFORTH PREDICTOR \& CORRECTOR METHOD

Predictor :

$$
y_{n+1, P}\left(x_{n}+h\right)=y_{n}+\frac{h}{24}\left[55 y_{n}^{\prime}-59 y_{n-1}^{\prime}+37 y_{n-2}^{\prime}-9 y_{n-3}^{\prime}\right]
$$

Corrector :

$$
y_{n+1, c}\left(x_{n}+h\right)=y_{n}+\frac{h}{24}\left[9 y_{n+1}^{\prime}+19 y_{n}^{\prime}-5 y_{n-1}^{\prime}+y_{n-2}^{\prime}\right]
$$

Example.1:

Given $\frac{d y}{d x}=x^{2}(1+y), y(1) A$. Also given $y(1.1)=1.233, y(1.2)=1.548$ and $y(1.3)=1.979$.
Find $y(1.4)$ By Using Adam's Method.
Solution: Given

$$
y^{\prime}=f(x, y)=\frac{d y}{d x}=x^{2}(1+y)
$$

$y(1)=1$	$y\left(x_{0}\right)=y_{0}$	$x_{0}=1$	$y_{0}=1$
$y(1.1)=1.233$	$y\left(x_{1}\right)=y_{1}$	$x_{1}=1.1$	$y_{1}=1.233$
$y(1.2)=1.548$	$y\left(x_{2}\right)=y_{2}$	$x_{2}=1.2$	$y_{2}=1.548$
$y(1.3)=1.979$	$y\left(x_{3}\right)=y_{3}$	$x_{3}=1.3$	$y_{3}=1.979$

Here $h=0.1$ and $n=3$ [Highest value of x is $x_{3} . \therefore n=3$]
The Adam's Predictor formula is

$$
\begin{equation*}
y_{n+1, P}\left(x_{n}+h\right)=y_{n}+\frac{h}{24}\left[55 y_{n}^{\prime}-59 y_{n-1}^{\prime}+37 y_{n-2}^{\prime}-9 y_{n-3}^{\prime}\right] \tag{1}
\end{equation*}
$$

Put $n=3$ in equation (1), we have

$$
\begin{equation*}
y_{4, P}\left(x_{3}+h\right)=y_{3}+\frac{h}{24}\left[55 y_{3}^{\prime}-59 y_{2}^{\prime}+37 y_{1}^{\prime}-9 y_{0}^{\prime}\right] \tag{2}
\end{equation*}
$$

Given $y^{\prime}=x^{2}(1+y)$

$x_{0}=1$	$y_{0}=1$	$y_{0}^{\prime}=x_{0}^{2}\left(1+y_{0}\right)$	$y_{0}^{\prime}=(1)^{2}(1+1)$	$y_{1}^{\prime}=2$
$x_{1}=1.1$	$y_{1}=1.233$	$y_{1}^{\prime}=x_{1}^{2}\left(1+y_{1}\right)$	$y_{1}^{\prime}=(1.1)^{2}(1+1.233)$	$y_{1}^{\prime}=2.70193$
$x_{2}=1.2$	$y_{2}=1.548$	$y_{2}^{\prime}=x_{2}^{2}\left(1+y_{2}\right)$	$y_{2}^{\prime}=(1.2)^{2}(1+1.548)$	$y_{2}^{\prime}=3.66912$
$x_{3}=1.3$	$y_{3}=1.979$	$y_{3}^{\prime}=x_{3}^{2}\left(1+y_{3}\right)$	$y_{3}^{\prime}=(1.3)^{2}(1+1.979)$	$y_{3}^{\prime}=2.0345$

Equation (2) becomes

$$
\begin{aligned}
y_{4, P}(1.3+0.1) & =1.979+\frac{0.1}{24}[55(2.0345)-59(3.66912)+37(2.70193)-9(2)] \\
y_{4, P}(1.4) & =1.979+\frac{0.1}{24}[142.33683]=1.979+0.593070 \\
y_{4, P}(1.4) & =2.5721 \quad\left[y\left(x_{4}\right)=y_{4}, \quad x_{4}=1.4 \& y_{4}=2.5721\right]
\end{aligned}
$$

The Adams's Corrector formula is

$$
\begin{equation*}
y_{n+1, c}\left(x_{n}+h\right)=y_{n}+\frac{h}{24}\left[9 y_{n+1}^{\prime}+19 y_{n}^{\prime}-5 y_{n-1}^{\prime}+y_{n-2}^{\prime}\right] \tag{3}
\end{equation*}
$$

Put $\mathrm{n}=\mathbf{3}$ in equation (3), we have

$$
\begin{equation*}
y_{4, C}\left(x_{3}+h\right)=y_{3}+\frac{h}{24}\left[9 y_{4}^{\prime}+19 y_{3}^{\prime}-5 y_{2}^{\prime}+y_{1}^{\prime}\right] \tag{4}
\end{equation*}
$$

$x_{4}=1.4$	$y_{4}=2.5721$	$y_{4}^{\prime}=x_{4}^{2}\left(1+y_{4}\right)$	$y_{4}^{\prime}=(1.4)^{2}(1+1.2751)$	$y_{4}^{\prime}=7.7030716$

Equation (4) becomes

$$
\begin{aligned}
y_{4, C}(1.3+0.1) & =1.979+\frac{0.1}{24}[9(7.7030716)+19(5.0345)-5(3.60912)+(2.70193)] \\
y_{4, C}(0.8) & =1.979+\frac{0.1}{24}[143.58827]=1.979+0.592844 \\
\boldsymbol{y}_{4, C}(0.8) & =\mathbf{2 . 5 7 7 2 8} \quad\left[\boldsymbol{y}\left(\boldsymbol{x}_{4}\right)=\boldsymbol{y}_{4}, \quad \boldsymbol{x}_{4}=1.4 \& \boldsymbol{y}_{4}=2.57728\right]
\end{aligned}
$$

Result:

$$
y_{4, P}(1.4)=2.5721 \quad \& \quad y_{4, C}(1.4)=2.5778
$$

Example. 2:

Using Adam's Method Find $y(4.4)$ Given $5 x y^{\prime}+y^{2}-2=0$ given $y(4)=1, \quad Y(4.1)=1.0049$, $y(4.2)=1.0097 \& y(4.3)=1.0143$

Solution: Given $5 x y^{\prime}+y^{2}-2=0 \Rightarrow 5 x y^{\prime}=2-y^{2} \Rightarrow y^{\prime}=\frac{2-y^{2}}{5 x}$ $y^{\prime}=f(x, y)=\frac{d y}{d x}=\frac{2-y^{2}}{5 x}$

$y(4)=1$	$y\left(x_{0}\right)=y_{0}$	$x_{0}=4$	$y_{0}=1$
$y(4.1)=2.073$	$y\left(x_{1}\right)=y_{1}$	$x_{1}=4.1$	$y_{1}=1.0049$
$y(4.2)=2.452$	$y\left(x_{2}\right)=y_{2}$	$x_{2}=4.2$	$y_{2}=1.0097$
$y(4.3)=3.023$	$y\left(x_{3}\right)=y_{3}$	$x_{3}=4.3$	$y_{3}=1.0143$

Here $h=0.1$ and $n=3$ [Highest value of x is $x_{3} . \quad \therefore n=3$]
The Adam's Predictor formula is

$$
\begin{equation*}
\left.y_{n+1, P}\left(x_{n}+h\right)=y_{n}+\frac{h}{24}\left[55 y_{n}^{\prime}-59 y_{n-1}^{\prime}+37 y_{n-2}^{\prime}\right]^{9} y_{n-}^{\prime}\right] \tag{1}
\end{equation*}
$$

Put $n=3$ in equation (1), we have

$$
\begin{equation*}
y_{4, P}\left(x_{3}+h\right)=y_{3}+\frac{h}{24}\left[55 y_{3}^{\prime}-59 y_{2}^{\prime}+37 y_{1}^{\prime}-9 y_{0}^{\prime}\right] \rho \tag{2}
\end{equation*}
$$

Given $y^{\prime}=\frac{2-y^{2}}{5 x}$

$x_{0}=4$	$y_{0}=1$	$y_{0}^{\prime}=\frac{2-y_{1}^{2}}{5 x_{1}}$	$y_{0}^{\prime}=\frac{2-(1)^{2}}{5(4)}$	$y_{1}^{\prime}=0.05$
$x_{1}=4.1$	$y_{1}=1.0049$	$y_{1}^{\prime}=\frac{2-y_{1}^{2}}{5 x_{1}}$	$y_{1}^{\prime}=\frac{2-(1.0049)^{2}}{5(4.1)}$	$y_{1}^{\prime}=0.0483$
$x_{2}=4.2$	$y_{2}=1.0097$	$y_{2}^{\prime}=\frac{2-y_{2}^{2}}{5 x_{2}}$	$y_{2}^{\prime}=\frac{2-(1.0097)^{2}}{5(4.2)}$	$y_{2}^{\prime}=0.0467$
$x_{3}=4.3$	$y_{3}=1.0143$	$y_{3}^{\prime}=\frac{2-y_{3}^{2}}{5 x_{3}}$	$y_{3}^{\prime}=\frac{2-(1.0143)^{2}}{5(4.3)}$	$y_{3}^{\prime}=0.0452$

Equation (2) becomes

$$
\begin{aligned}
& y_{4, P}\left(x_{3}+h\right)=y_{3}+\frac{h}{24}\left[55 y_{3}^{\prime}-59 y_{2}^{\prime}+37 y_{1}^{\prime}-9 y_{0}^{\prime}\right] \\
& y_{4, P}(4.3+0.1)=1.0143+\frac{0.1}{24}[55(0.0452)-59(0.0467)+37(0.0483)-9(0.05)] \\
& y_{4, P}(4.4)=1.0143+\frac{0.1}{24}[1.0678]=1.0186
\end{aligned}
$$

$$
y_{4, P}(4.4)=1.0186 \quad\left[y\left(x_{4}\right)=y_{4}, x_{4}=4.4 \quad \& \quad y_{4}=1.0186\right]
$$

The Adam's Corrector formula is

$$
\begin{equation*}
y_{n+1, c}\left(x_{n}+h\right)=y_{n}+\frac{h}{24}\left[9 y_{n+1}^{\prime}+19 y_{n}^{\prime}-5 y_{n-1}^{\prime}+y_{n-2}^{\prime}\right] \tag{3}
\end{equation*}
$$

Put $\boldsymbol{n}=\mathbf{3}$ in equation (3), we have

$$
y_{4, C}\left(x_{3}+h\right)=y_{3}+\frac{h}{24}\left[9 y_{4}^{\prime}+19 y_{3}^{\prime}-5 y_{2}^{\prime}+y_{1}^{\prime}\right]
$$

$x_{4}=4.4$	$y_{4}=1.0186$	$y_{4}^{\prime}=\frac{2-y_{4}^{2}}{5 x_{4}}$	$y_{4}^{\prime}=\frac{2-(1.0186)^{2}}{5(4.4)}$	$y_{4}^{\prime}=0.0437$

Equation (4) becomes

$$
y_{4, c}(4.3+0.1)=1.0143+\frac{0.1}{24}[9(0.0437)+19(0.0452)-5(0.0467)+(0.0483)]
$$

$$
y_{4, C}(4.4)=1.979+\frac{0.1}{24}[1.0669]
$$

$$
y_{4, C}(4.4)=1.0187 \quad\left[y\left(x_{4}\right)=y_{4}, x_{4}=4.4\right.
$$

Result:

$$
y_{4, P}(4.4)=1.0186 \quad \& \quad y_{4, C}(4.4)=1.0187
$$

Example. 3 :

Given $\frac{d y}{d x}=\frac{1}{2}(1+x) y^{2}, y(0)=1$. Also given $y(0.1)=1.0546, y(0.2)=1.1227$ and $y(0.3)=1.2074$.
Find y (0.4) By Using Adam's Method.
Solution: Given
$y^{\prime}=f(x, y)=\frac{d y}{d x}=\frac{1}{2}(1+x) y^{2}$

$y(0)=1$	$y\left(x_{0}\right)=y_{0}$	$x_{0}=0$	$y_{0}=1$
$y(0.1)=1.0456$	$y\left(x_{1}\right)=y_{1}$	$x_{1}=0.1$	$y_{1}=1.0456$
$y(0.2)=1.1277$	$y\left(x_{2}\right)=y_{2}$	$x_{2}=0.2$	$y_{2}=1.1277$
$y(0.3)=1.2074$	$y\left(x_{3}\right)=y_{3}$	$x_{3}=0.3$	$y_{3}=1.2074$

Here $h=0.1$ and $n=3$ [Highest value of x is $x_{3} . \therefore n=3$]

The Adam's Predictor formula is

$$
\begin{equation*}
y_{n+1, P}\left(x_{n}+h\right)=y_{n}+\frac{h}{24}\left[55 y_{n}^{\prime}-59 y_{n-1}^{\prime}+37 y_{n-2}^{\prime}-9 y_{n-3}^{\prime}\right] \tag{1}
\end{equation*}
$$

Put $\mathrm{n}=\mathbf{3}$ in equation (1), we have

$$
\begin{equation*}
y_{4, P}\left(x_{3}+h\right)=y_{3}+\frac{h}{24}\left[55 y_{3}^{\prime}-59 y_{2}^{\prime}+37 y_{1}^{\prime}-9 y_{0}^{\prime}\right] \tag{2}
\end{equation*}
$$

Given $\quad y^{\prime}=\frac{1}{2}(1+x) y^{2}$

$x_{0}=0$	$y_{0}=1$	$y_{0}^{\prime}=\frac{1}{2}\left(1+x_{0}\right) y_{0}^{2}$	$y_{0}^{\prime}=\frac{1}{2}[1+0](1)^{2}$	$y_{0}^{\prime}=0.5$
$x_{1}=0.1$	$y_{1}=1.0456$	$y_{1}^{\prime}=\frac{1}{2}\left(1+x_{1}\right) y_{1}^{2}$	$y_{1}^{\prime}=\frac{1}{2}[1+0.1](1.0456)^{2}$	$y_{1}^{\prime}=0.61171$
$x_{2}=0.2$	$y_{2}=1.1227$	$y_{2}^{\prime}=\frac{1}{2}\left(1+x_{2}\right) y_{2}^{2}$	$y_{2}^{\prime}=\frac{1}{2}[1+0.2](1.1277)^{2}$	$y_{2}^{\prime}=0.7563$
$x_{3}=0.3$	$y_{3}=1.2074$	$y_{3}^{\prime}=\frac{1}{2}\left(1+x_{3}\right) y_{3}^{2}$	$y_{3}^{\prime}=\frac{1}{2}[1+0.3](1.2074)^{2}$	$y_{3}^{\prime}=0.9475$

Equation (2) becomes

$$
\begin{aligned}
y_{4, P}(0.3+0.1) & =1.2063+\frac{0.1}{24}[55(0.9475)-59(0.7563)+37(0.611 \pi 1)-9(0.5)] \\
y_{4, P}(0.4) & =1.979+\frac{0.1}{24}[25.5361]=1.2063+0.1064 \\
\boldsymbol{y}_{4, P}(0.4) & =1.3127 \quad\left[\boldsymbol{y}\left(\boldsymbol{x}_{4}\right)=\boldsymbol{y}_{4}, \quad \boldsymbol{x}_{4}=\mathbf{0 . 4} \quad \& \boldsymbol{y}_{4}=1.3127\right]
\end{aligned}
$$

The Adams's Corrector formula is

$$
\begin{equation*}
y_{n+1, c}\left(x_{n}+h\right)=y_{n}+\frac{h}{24}\left[9 y_{n+1}^{\prime}+19 y_{n}^{\prime}-5 y_{n-1}^{\prime}+y_{n-2}^{\prime}\right] \tag{3}
\end{equation*}
$$

Put $\boldsymbol{n}=\mathbf{3}$ in equation (3), we have

$$
\begin{equation*}
y_{4, c}\left(x_{3}+h\right)=y_{3}+\frac{h}{24}\left[9 \boldsymbol{y}_{4}+19 y_{3}^{\prime}-5 y_{2}^{\prime}+y_{1}^{\prime}\right] \tag{4}
\end{equation*}
$$

$x_{4}=0.4$	$y_{4}=1.3127$	$y_{4}{ }^{\prime}=\frac{1}{2}\left(1+x_{4}\right) y_{4}^{2}$	$y_{4}{ }^{\prime}=\frac{1}{2}[1+0.4](1.3127)^{2}$	$y_{4}{ }^{\prime}=1.2062$

Equation (4) becomes

$$
\begin{aligned}
y_{4, C}(0.3+0.1) & =1.2063+\frac{0.1}{24}[9(1.2062)+19(0.9475)-5(0.7563)+(0.61171)] \\
y_{4, C}(0.4) & =1.2063+\frac{0.1}{24}[25.6885] \\
\boldsymbol{y}_{4, c}(0.4) & =1.3133 \quad\left[\boldsymbol{y}\left(\boldsymbol{x}_{4}\right)=\boldsymbol{y}_{4}, \quad \boldsymbol{x}_{4}=\mathbf{0 . 4} \& \boldsymbol{y}_{4}=1.3133\right]
\end{aligned}
$$

Result:

$$
y_{4, P}(0.4)=1.3127 \quad \& \quad y_{4, C}(0.4)=1.3133
$$

