PARABOLIC EQUATIONS

BENDER SCHMIDIT METHOD :

The one dimensional Heat equation $\frac{\partial^{2} u}{\partial x^{2}}=a \frac{\partial u}{\partial t}$
This is an example of parabolic equations
AIM :

$$
\begin{equation*}
\text { To solve } u_{x x}=a u_{t} \tag{1}
\end{equation*}
$$

with boundary conditions $u(0, t)=T_{0}$

$$
\begin{align*}
& u(l, t)=T_{l} \\
& u(x, 0)=f(x), \quad 0<x<l \tag{4}\\
& u_{i, j+1}=\lambda u_{i+1, j}+(1-2 \lambda) u_{i, j}+\lambda u_{i-}
\end{align*}
$$

Equation (5) is called EXPLICIT FORMULA.
This formula is valid only if $0<\lambda \leq \frac{1}{2}$.

If we take $\lambda=\frac{1}{2}$ then Equation (5) becomes

$$
\begin{equation*}
u_{i, j+1}=\frac{1}{2}\left[\lambda u_{i-1, j}+\Delta u_{i+1, j}\right] \tag{6}
\end{equation*}
$$

In this case $\lambda=\frac{1}{2}$ and $k=\frac{d h^{2}}{2}$
Equation (6) is called BENDER SCHMIDIT RECCURENCE EQUATION.
Example. 1: Solve $\frac{\partial^{2} u}{\partial x^{2}}-2 \frac{\partial u}{\partial t}=0$ given $u(0, t)=0, u(4, t)=0, u(x, 0)=x(4-x)$. Assume $h=1$. Find the values of u upto $t=5$.

Solution :

Given $\frac{\partial^{2} u}{\partial x^{2}}-2 \frac{\partial u}{\partial t}=0 \Rightarrow a=2$. Also $h=1 \quad$ [Given]
Since $k=\frac{a h^{2}}{2} \quad \Rightarrow \quad k=2 \frac{(1)^{2}}{2}=1 \quad \Rightarrow k=1$
Given $\boldsymbol{u}(\mathbf{0}, \boldsymbol{t})=\mathbf{0}, \quad \Rightarrow u(0,0)=(0,1)=u(0,2)=u(0,3)=u(0,4)=u(0,5)=0$
Also $u(4, \boldsymbol{t})=\mathbf{0}, \quad \Rightarrow u(4,0)=(4,1)=u(4,2)=u(4,3)=u(4,0)=u(5,0)=0$
Since $\boldsymbol{u}(\boldsymbol{x}, \mathbf{0})=\boldsymbol{x}(\mathbf{4}-\boldsymbol{x}) \Rightarrow u(0,0)=0(4-0)=0$

$$
\begin{array}{ll}
\boldsymbol{u}(1,0)=1(4-1)=3, & \boldsymbol{u}(2,0)=2(4-2)=4 \\
\boldsymbol{u}(3,0)=3(4-3)=3, & \boldsymbol{u}(4,0)=4(4-4)=0
\end{array}
$$

The values of $u_{i, j}$ are tabulated below

Example. 2: Solve $u_{t}=u_{x x}$ subject to $u(0, t)=0, \mu(1, t)=0$ and $u(x, 0)=\sin \pi x, 0<x<1$

Solution :

Given $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t} \Rightarrow a=1$.

Since $h \& k$ are not given.
Since $k=\frac{a h^{2}}{2} \quad \Rightarrow \quad k=1 \frac{\left.h^{2}\right)}{2}=\frac{h^{2}}{2}$ Since the range is $(0,1)$.
Let us choose $h=0.2$.

$$
\therefore \quad k=\frac{(0.2)^{2}}{2}=\frac{0.04}{2}=0.02
$$

Given $\boldsymbol{u}(0, \boldsymbol{t})=\mathbf{0}, \quad \Rightarrow u(0,0)=(0,0.02)=u(0,0.04)=u(0,0.06)=u(0,0.08)=u(0,0.1)=0$
Also $\quad u(1, t)=0, \quad \Rightarrow u(1,0)=(1,0.02)=u(1,0.04)=u(1,0.06)=u(1,0.08)=u(1,0.1)=0$
Since $\boldsymbol{u}(x, 0)=\sin \pi x \Rightarrow u(0,0)=\sin \pi(0)=\sin 0=0$

$$
\begin{array}{ll}
\boldsymbol{u}(0.2,0)=\sin \pi(0.2)=0.5878, & \boldsymbol{u}(0.4,0)=\sin \pi(0.4)=0.9511 \\
\boldsymbol{u}(0.6,0)=\sin \pi(0.6)=0.9511, & \boldsymbol{u}(0.8,0)=\sin \pi(0.8)=0.5878 \\
\boldsymbol{u}(\mathbf{1 . 0} 0)=\sin \pi(1)=0
\end{array}
$$

The values of $u_{i, j}$ are tabulated below

x-direction \rightarrow (h-diff $)$								
	$\boldsymbol{j} \backslash \boldsymbol{i}$	0	0.2	0.4	0.6	0.8	1.0	
	0	0	0.5878	0.9511	0.9511	0.5878	0	$u(x, 0)=\sin \pi x$
	0.02	0	0.4756	0.7695	0.7695	0.4756	0	
	0.04	0	0.3848	0.6225	0.6225	0.3848	0	
	0.06	0	0.3113	0.5036	0.5036	0.3113	0	
	0.08	0	0.2518	0.4074	0.4074	0.2518	0	
	0.10	0	0.2037	0.3296	0.3296	0.2037	0	
		$u(0, t)=0$			\bigcirc	N	$u(0, t)=0$	

Example.3: Solve $32 u_{t}=u_{x x}$ taking $h=0.25$ for $t>0,0<x<1$ and $u(x, 0)=0$,
$u(0, t)=0, u(1, t)=t$.

Solution :

Given $u_{x x}=32 u_{t} \Rightarrow a=32$. Also $h=0.25$
Since $k=\frac{a h^{2}}{2} \Rightarrow k=32 \frac{(c, 25)^{2}}{2}=1$.
Given $\boldsymbol{u}(\mathbf{0}, \boldsymbol{t})=\mathbf{0}, \quad \Rightarrow u(0,0)=(0,1)=u(0,2)=u 3=u(0,4)=u(0,5)=0$
Also $u(1, t)=t, \quad \Rightarrow u(1,0)=0, u(1,1)=1, u(1,2)=2, u(1,3)=3, u(1,4)=4, u(1,5)$

$$
=5
$$

Since $\boldsymbol{u}(\boldsymbol{x}, \mathbf{0})=\mathbf{0} \Rightarrow \boldsymbol{u}(0,0)=0, \quad \boldsymbol{u}(0.25,0)=0, \quad \boldsymbol{u}(0.50,0)=0$,

$$
u(0.75,0)=0, \quad u(1.0,0)=0
$$

The values of $u_{i, j}$ are tabulated below

x-direction \rightarrow (h-diff)						
\downarrow । $\quad \boldsymbol{j} \backslash \boldsymbol{i}$	0	0.25	0.50	0.75	1.0	
$5 \frac{2}{7}$	0	0	0	0	0	$u(x, 0)=0$

Example.4: Solve $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, \quad 0 \leq x \leq 1, t \geq 0$ with $u(x, 0)=x(1-x), 0<x<1$ and $u(0, t)=u(1, t)=0 \forall t>0$ using Explicit method with $\Delta x=0.2$ for three time steps.

Solution :

Given $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} \Rightarrow a=1$. Also $\Delta x=h=0.2$
Since $k=\frac{a h^{2}}{2} \Rightarrow k=\frac{(0.2)^{2}}{2}=0.02$.

$$
u_{i, j+1}=\frac{1}{2}\left[\lambda u_{i-1, j}+\jmath u_{i+1, j}\right]
$$

Given $u(0, \boldsymbol{t})=\mathbf{0}, \Rightarrow u(0,0)=(0,1)=u(0,2)=u 3=u(0,4)=u(0,5)=0$
Also $u(1, t)=0, \Rightarrow u(1,0)=0, u(1,1)=0, u(1,2)=0, u(1,3)=0, u(1,4)=0, u(1,5)$

$$
=0
$$

Since $\boldsymbol{u}(\boldsymbol{x}, \mathbf{0})=\boldsymbol{x}(\mathbf{1}-\boldsymbol{x}) \Rightarrow \boldsymbol{u}(\mathbf{0}, \mathbf{0})=0, \quad \boldsymbol{u}(\mathbf{0 . 2}, \mathbf{0})=0.2(1-0.2)=0.16$,

$$
\boldsymbol{u}(0.4,0)=0.4(1-0.4)=0.24, \quad \boldsymbol{u}(0.6,0)=0.24, \quad \boldsymbol{u}(0.8,0)=0.16
$$

The values of $u_{i, j}$ are tabulated below

x-direction \rightarrow (h-diff $)$								
	$\boldsymbol{j} \backslash \boldsymbol{i}$	0	0.2	0.4	0.6	0.8	1.0	
	0	0	0.16	0.24	0.24	0.16	0	$u(x, 0)=0$
	0.2	0	0.12	0.2	0.2	0.12	0	
	0.4	0	0.1	0.16	0.16	0.1	0	

	0.6	0	0.08	0.13	0.13	0.08	0	
	0.8	0	0.065	0.105	0.105	0.065	0	
	1.0	0	0.0525	0.085	0.085	0.0525	0	
		$u(0, t)=0$					$u(1, t)=0$	

CRANK-NICOLSON'S METHOD

DIFFERENCE EQUATION CORRESPONDING TO THE PARABOLIC EQUATION
$\frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}($ IMPILICT METHOD $)$
The Crank Nicolson's difference equation in the general form is given by

$$
-\lambda u_{i-1, j+1}+(2 \lambda+2) u_{i, j+1}-\lambda u_{i+1, j+1}=\lambda u_{i-1, j} f(2-2 \lambda) u_{i, j}+\lambda u_{i+1, j}
$$

If $\lambda=1$, the Crank Nicolson's difference equation is takes the form

$$
-u_{i-1, j+1}+4 u_{i, j+1}-u_{i+1,+1}=u_{i-1, j}+u_{i+1, j}
$$

$$
u_{i, j+}-u_{i+1} j j+1=u_{i-1, j}+u_{i+1, j}
$$

Also $k=a h^{2}$

Example:

Solve by Crank - Nicholson method the equation $u_{x x}=u_{t}$ subject to $u(x, 0)=0, u(0, t)=0$ and $u(1, t)=t$, for two time steps.

Solution:

Here x ranges from 0 to 1 , take $h=1 / 4 . a=1$

$$
\therefore \quad k=a h^{2}, \quad k=1\left(\frac{1}{4}\right)^{2}=\frac{1}{16} .
$$

We use the formula

$$
u_{i, j+1}=\frac{1}{4}\left[u_{i+1, j+1}+u_{i-1, j+1}+u_{i-1, j}+u_{i+1, j}\right]---(1)
$$

	$\mathbf{0}$	0.25	0.5	0.75	1
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\frac{1}{16}$	$\mathbf{0}$	u_{1}	u_{2}	u_{3}	$\frac{1}{16}$
$\frac{2}{16}$	0	u_{4}	u_{5}	u_{6}	$\frac{2}{16}$

$u_{1}=\frac{1}{4}\left[0+0+0+u_{2}\right]$	$4 u_{1}=u_{2}$	$4 u_{1}-u_{2}=0$
$u_{2}=\frac{1}{4}\left[0+0+u_{1}+u_{3}\right]$	$4 u_{2}=\left[u_{1}+u_{3}\right]$	$-u_{1}+4 u_{2}-u_{3}=0$
$u_{3}=\frac{1}{4}\left[0+0+u_{2}+\frac{1}{16}\right]$	$4 u_{3}=u_{2}+\frac{1}{16}$	$0 u_{1}-u_{2}+4 u_{3}=\frac{1}{16}$

Solving we get $u_{1}=0.0011, u_{2}=0.0045, u_{3}=0.0168$

$u_{4}=\frac{1}{4}\left[0+0+u_{2}+u_{5}\right]$	$4 u_{4}=u_{2}+u_{5}$	$4 u_{4}-u_{5}=0.0045$
$u_{5}=\frac{1}{4}\left[u_{1}+u_{4}+u_{3}+u_{6}\right]$	$4 u_{5}=0.0011+u_{4}+0.0168+u_{6}$	$-u_{4}+4 u_{5}-u_{6}=0.0179$
$u_{6}=\frac{1}{4}\left[u_{2}+u_{5}+\frac{1}{16}+\frac{2}{16}\right]$	$4 u_{6}=0.0045+u_{5}+\frac{3}{16}$	$-u_{5}+4 u_{6}=0.192$

Solving we get $u_{4}=0.005899, u_{3}=0.01913, u_{6}=0.052777$

Example:

Using Crank - Nicholson method, solve the equation $u_{x x}=16 u_{t}$ subject to $u(x, 0)=0, u(0, t)=0$ and $u(1, t)=100 t$. Compute t for one time step taking $h=1 / 4$.

Solution:

Given $h=1 / 4 . a^{2}=16, \quad a=4$

$$
\therefore \quad k=a h^{2}, \quad k=16\left(\frac{1}{4}\right)^{2}=1 .
$$

We use the formula $\quad u_{i, j+1}=\frac{1}{4}\left[u_{i+1, j+1}+u_{i-1, j+1}+u_{i-1, j}+u_{i+1, j}\right]---$

	$\mathbf{0}$	0.25	0.5	0.75	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
1	$\mathbf{0}$	u_{1}	u_{2}	u_{3}	100

$u_{1}=\frac{1}{4}\left[0+0+0+u_{2}\right]$	$4 u_{1}=u_{2}$	$4 u_{1}-u_{2}=0$
$u_{2}=\frac{1}{4}\left[0+0+u_{1}+u_{3}\right]$	$4 u_{2}=\left[u_{1}+u_{3}\right]$	$-u_{1}+4 u_{2}-u_{3}=0$
$u_{3}=\frac{1}{4}\left[0+0+u_{2}+100\right]$	$4 u_{3}=u_{2}+100$	$0 u_{1}-u_{2}+4 u_{3}=100$

Solving we get $u_{1}=1.7857, u_{2}=7.1429, u_{3}=26.7857$

ONE DIMENSIONAL WAVE EQUATION

The wave equation $\frac{\partial^{2} u}{\partial t^{2}}=a^{2} \frac{\partial^{2} u}{\partial x^{2}}$ is the simplest form of the hyperbolic equations.
The explicit formula for solving wave equation is given by

$$
u_{i, j+1}=u_{i-1, j}+u_{i+1, j}-u_{i, j-1} \quad \text { where } \mathcal{j}=h / a
$$

Example: 1 Solve $y_{t t}=y_{x x}$ upto $t=0.5$ with a spacing of 0.1 sybject to $y(0, t)=0, y(1, t)=0$, $y_{t}(x, 0)=0$ and $y(x, 0)=10+x(10-x)$.

Solution:
Given $y_{t t}=y_{x x} \Rightarrow \frac{\partial^{2} y}{\partial t^{2}}=a^{2} \frac{\partial^{2} y}{\partial x^{2}} \Rightarrow a^{2} \Rightarrow 1 \Rightarrow a=1$.

$$
h=0.1 \quad \Rightarrow k_{l}=\frac{h}{a}=\frac{0.1}{1}=0.1
$$

The explicit formula for solving wave equation is given by

$$
u_{i, j+1}=u_{i-1, j}+u_{i+1, j}-u_{i, j-1}
$$

$y(x, 0)=10+x(10-x)$

$$
y(0.1,0)=0.1+0.1(10-0.1)=10.09
$$

$$
y(0.2,0)=0.2+0.2(10-0.2)=10.16
$$

$$
y(0.3,0)=0.3+0.3(10-0.3)=10.21
$$

$$
y(0.4,0)=0.4+0.4(10-0.4)=10.24
$$

$$
y(0.5,0)=0.5+0.5(10-0.5)=10.25
$$

$$
y(0.6,0)=0.6+0.6(10-0.6)=10.24
$$

$$
y(0.7,0)=0.7+071(10-0.7)=10.21
$$

$$
\begin{aligned}
& y(0.8,0)=0.8+0.8(10-0.8)=10.16 \\
& y(0.9,0)=0.9+0.9(10-0.9)=10.09
\end{aligned}
$$

x/t	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
0	0	10.09	10.16	10.21	10.24	10.25	10.24	10.21	10.16	10.09	0
0.1	0	5.08	10.15	10.2	10.23	10.24	10.23	10.2	10.15	5.08	0
0.2	0	0.06	5.12	10.17	10.2	10.21	10.2	10.17	7.64	5.08	0
0.3	0	0.04	0.08	5.12	10.15	10.16	10.15	8.92	7.63	3.82	0
0.4	0	0.02	0.04	0.06	5.08	10.09	8.92	8.89	6.37	3.82	0
0.5	0	0	0	0	0	0	0	0	0	0	0
	$y(0, t)=0$										$y(1, t)=0$

Example: 2 Approximate the solution of the wave equation $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}, 0<x<1, t>0$,

$$
u(0, t)=u(1, t)=0, t>0, \quad u(x, 0)=\sin 2 \pi x, 0 \leq x \leq 1 \text { and } \frac{\partial u t}{\partial t}(x, 0)=0, \quad 0 \leq x \leq 1
$$

with $\Delta x=0.25$ and $\Delta t=0.25$ for three time steps.

Solution:

Given $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}} \Rightarrow a^{2}=1 \Rightarrow a=1$.

$$
\Delta x=h=0.25 \text { and } \Delta \Delta=k=0.25
$$

The explicit formula for solving wave equation is given by

$$
u_{i, j+1}=u_{i-1, j}()+u_{i+1, j}-u_{i, j-1}
$$

$u(x, 0)=\sin 2 \pi x$

$$
\begin{array}{ll}
u(0.0,0)=\sin 2 \pi(0)=0 & u(0.25,0)=\sin 2 \pi(0.25)=1 \\
u(0.50,0)=\sin 2 \pi(0.50)=0 & u(0.75,0)=\sin 2 \pi(0.75)=-1 \\
u(1.0,0)=\sin 2 \pi(1)=0 &
\end{array}
$$

x / t	0	0.25	0.5	0.75	1
0	0	1	0	-1	0
0.25	0	0	0	0	0
0.5	0	-1	0	1	0
0.75	0	0	0	0	0
1	0	1	0	-1	0
	$\boldsymbol{u}(0, t)=0$				$u(1, t)=0$

Example: 3 Solve $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}, 0<x<1, t>0, u(0, t)=0, u(1, t)=0, u(x, 0)=x-x^{2}$ and $\frac{\partial u}{\partial t}(x, 0)=0$ taking $\mathrm{h}=0.2$ upto $t=1$.

Solution:

Given $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}} \quad \Rightarrow a^{2}=1 \Rightarrow a=1$.

$$
h=0.2 \quad \Rightarrow k=\frac{h}{a}=\frac{0.2}{1}=0.2
$$

The explicit formula for solving wave equation is given by

$$
u_{i, j+1}=u_{i-1, j}+u_{i+1, j}-u_{i, j-1}
$$

$u(x, 0)=x-x^{2}$

$$
u(0,0)=0-0^{2}=0
$$

$$
u(0.2,0)=0.2-0.2^{2}=0.16
$$

$$
u(0.4,0)=0.4-0.4^{2}=0.24
$$

$$
u(0.6,0)=0.6-0.6^{2}=0.24
$$

$$
u(0.8,0)=0.8-0.8^{2}=0.16
$$

$$
u(1.0,0)=1-1^{2}=0
$$

16	0.4	0.6	0.8
12	0.24	0.24	0.16
12	0.2	0.2	0.12
04	0.08	0.08	0.04
0.04	-0.08	-0.08	-0.04
0.12	-0.2	-0.2	-0.12
0.16	-0.24	-0.24	-0.16

Example: 4 Solve $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}, 0<x<1, t>0, u(0, t)=0, u(1, t)=0, u(x, 0)=100\left(x-x^{2}\right)$ and $\frac{\partial u}{\partial t}(x, 0)=0$ taking $\mathrm{h}=0.2$ by using finite difference method for once time step.

Solution:

Given $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}} \quad \Rightarrow a^{2}=1 \Rightarrow a=1$.

$$
h=0.25 \quad \Rightarrow k=\frac{h}{a}=\frac{0.25}{1}=0.25
$$

The explicit formula for solving wave equation is given by

$$
u_{i, j+1}=u_{i-1, j}+u_{i+1, j}-u_{i, j-1}
$$

$$
\begin{aligned}
u(x, 0) & =100\left(x-x^{2}\right) \\
& u(0,0)=100\left(0-0^{2}\right)=0 \\
& u(0.25,0)=100\left(0.25-0.25^{2}\right)=18.75 \\
& u(0.50,0)=100\left(0.5-0.5^{2}\right)=25 \\
& u(0.75,0)=100\left(0.75-0.75^{2}\right)=18.75 \\
& u(1.0,0)=100\left(1-1^{2}\right)=0
\end{aligned}
$$

$\boldsymbol{x} / \boldsymbol{t}$	$\mathbf{0}$	$\mathbf{0 . 2 5}$	$\mathbf{0 . 5}$	$\mathbf{0 . 7 5}$	$\mathbf{1}$
$\mathbf{0}$	0	18.75	25	18.75	$\mathbf{0}$
$\mathbf{0 . 2 5}$	0	12.5	18.75	12.5	0
$\mathbf{0 . 5}$	0	0	0	0	0
	$\boldsymbol{u}(\mathbf{0}, \boldsymbol{t})=\mathbf{0}$				$\boldsymbol{u}(\mathbf{1}, \boldsymbol{t})=\mathbf{0}$

TWO-DIMËNSIONALLAPLACE EQUATION

I. ELLIPTIC EQUATIONS

The Laplace equation $\nabla^{2} u=\frac{\partial \partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$.
The standard five point formula is given by

$$
u_{i}, j=\frac{1}{4}\left[u_{i-1, j}+u_{i+1, j}+u_{i, j-1}+u_{i, j+1}\right]
$$

The diagonal five point formula is given by

$$
u_{i}, j=\frac{1}{4}\left[u_{i-1, j-1}+u_{i-1, j+1}+u_{i+1, j-1}+u_{i+1, j+1}\right]
$$

Example: 1

Solve $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$, in $|x|<1,|y|<1$ with $h=\frac{1}{2}$ and $u(x, \pm 1)=x^{2} \& u(\pm 1, y)=y^{2}$
(i) $u(x, 1)=x^{2},-1<x<+1$
(ii) $u(x,-1)=x^{2},-1<x<+1$
(iii) $u(1, y)=y^{2},-1<y<+1$
(iv) $u(-1, y)=y^{2},-1<y<+1$

Solution:

To find the rough values:

$$
\begin{aligned}
& u_{5}=\frac{1}{4}[0+0+0+0]=0 \quad\{S F P F\} \\
& u_{1}=\frac{1}{4}[0+0+0+1]=0.25 \quad\{D F P F\} \\
& u_{3}=\frac{1}{4}[1+0+0+0]=0.25 \\
& u_{7}=\frac{1}{4}[1+0+0+0]=0.25 \\
& u_{9}=\frac{1}{4}[1+0+0-g]=0.25
\end{aligned}
$$

To find the other rough values, we use SFPF

$$
\begin{array}{ll}
u_{2}=\frac{1}{4}[0+0+0.25+0.25]=0.125 & \{S F P F\} \\
u_{4}=\frac{1}{4}[0+0+0.25+0.25]=0.125 & \{S F P F\} \\
u_{6}=\frac{1}{4}[0+0+0.25+0.25]=0.125 & \{S F P F\} \\
u_{8}=\frac{1}{4}[0+0+0.25+0.25]=0.125 & \{S F P F\}
\end{array}
$$

Here after we use only SFPF.

First Iteration:

$$
\begin{aligned}
& u_{1}=\frac{1}{4}[0.25+0.25+0.125+0.125]=0.19 \\
& u_{2}=\frac{1}{4}[0+0.19+0.25+0]=0.11 \\
& u_{3}=\frac{1}{4}[0.25+0.25+0.11+0.125]=0.18 \\
& u_{4}=\frac{1}{4}[0+0.19+0+0.25]=0.11 \\
& u_{5}=\frac{1}{4}[0.11+0.11+0.125+0.125]=0.12 \\
& u_{6}=\frac{1}{4}[0+0.12+0.18+0.25]=0.14 \\
& u_{7}=\frac{1}{4}[0.25+0.25+0.11+0.25]=0.18 \\
& u_{8}=\frac{1}{4}[0+0.12+0.18+0.25]=0.14 \\
& u_{9}=\frac{1}{4}[0.25+0.25+0.14+0.14]=0.20
\end{aligned}
$$

Second Iteration :

$u_{1}=0.19, \quad u_{2}=0.11, u_{3}=0.18, u_{4}=0.11, u_{5}=0.12, u_{6}=0.14$, $u_{7}=0.18, \quad u_{8}=0.14, \quad u_{9}=0.20$
Third Iteration :
$u_{1}=0.18, \quad u_{2}=0.12, u_{3}=0.19, u_{4}=0.12, u_{5}=0.13, u_{6}=0.13$, $u_{7}=0.19, \quad u_{8}=0.13, \quad u_{9}=0.19$

Poisson's Equation

An equation of the form $\nabla^{2} u=f(x, y)$

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=f(x, y)-(1)
$$

Is called Poisson's equation where $f(x, y)$ is a function of $x \& y$.
The algorithm for solving Poisson's equation is

$$
\begin{equation*}
u_{i-1, j}+u_{i+1, j}+u_{i, j-1}+u_{i, j+1}-4 u_{i, j}=h^{2} f(i h, j h) \tag{2}
\end{equation*}
$$

Example:

Solve $\nabla^{2} u=-10\left(x^{2}+y^{2}+10\right)$ over the square mesh with sides $x=0, y=0, x=3, y=3$ with $u=0$ on the boundary and mesh length 1 unit.

Solution:

The boundary values at each side are equal, then $u_{1}=u_{4}$. We need to find u_{1}, u_{2} and u_{3}.

The Partial differential equation is $\nabla^{2} u=-10\left(x^{2}+y^{2}+10\right), h=1$

$$
\begin{aligned}
& \text { Now, } u_{i-1, j}+u_{i+1, j}+u_{i, j-1}+u_{i, j+1}-4 u_{i j}=h^{2} f(i h, j h)--(1) \\
& u_{i-1, j}+u_{i+1, j}+u_{i, j-1}+u_{i, j+1}-4 u_{i, j}=-10\left[i^{2}+j^{2}+10\right]--(2)
\end{aligned}
$$

Applying (2) at the point $A(i=1, j=2)$

$$
0+0+u_{2}+y_{3}-4 u_{1}=-10[1+4+10]
$$

$$
\begin{array}{l}-4 u_{1}+u_{2}+u_{3}=-150 \ldots \ldots(3) \\ \text { Applying (2) at the pointr } B(f=2, j=2) \\ u_{1}+0+u_{4}+0-4 u_{2}=-10[4+4+10]\end{array}
$$

$$
\begin{equation*}
2 u_{1}-4 u_{2}=-180 \tag{4}
\end{equation*}
$$

Applying (2) at the point $C(i=1, j=1)$

$$
\begin{gather*}
0+u_{4}+0+u_{1}-4 u_{3}=-10[1+1+10] \\
2 u_{1}-4 u_{3}=-120 \ldots \ldots(5) \tag{5}
\end{gather*}
$$

Solving the equations (3), (4) and (5), we get

$$
u_{1}=u_{4}=75, u_{2}=82.5 \text { and } u_{3}=67.5
$$

Example:

Solve $\nabla^{2} u=8 x^{2} y^{2}$ for square mesh given $u=0$ on the four boundaries dividing the square into 16 sub-squares of length 1 unit.

Solution: The values on the boundary are symmetric to each other.

$$
\therefore \quad u_{1}=u_{3}=u_{7}=u_{9}, \quad u_{2}=u_{4}=u_{6}=u_{8} \text { and } u_{5} \text { not equal to any value }
$$

So we need to find u_{1}, u_{2} and u_{5}.

The Partial differential equation is $\nabla^{2} u=8 x^{2} y^{2}, \quad h=1$

$$
\begin{align*}
\text { Now, } & u_{i-1, j}+u_{i+1, j}+u_{i, j-1}+u_{i, j+1}-4 u_{i, j} \tag{1}
\end{align*}=h^{2} f(i h, j h)
$$

Applying (2) at the point $A(\hat{i})=-1, j=-1)$

$$
\begin{gather*}
0+0+u_{2}+u_{4}-4 u_{1}=8(-1)^{2}(-1)^{2} \\
-4 u_{1}+2 u_{2}=8 \ldots \ldots(3) \tag{3}
\end{gather*}
$$

Applying (2) at the point $B(i=0, j=1)$

$$
\begin{gather*}
u_{1}+u_{3}+u_{5}-4 u_{2}=8(0)(1) \\
2 u_{1}-4 u_{2}+u_{5}=0 \ldots \ldots(4) \tag{4}
\end{gather*}
$$

Applying (2) at the point $C(i=0, j=0)$

$$
\begin{gather*}
u_{4}+u_{6}+u_{2}+u_{8}-4 u_{5}=8(0)(0) \\
4 u_{2}-4 u_{5}=0 \ldots \ldots \tag{5}
\end{gather*}
$$

Solving the equations (3), (4) and (5), we get

$$
u_{1}=u_{3}=u_{7}=u_{9}=-3, \quad u_{2}=u_{4}=u_{6}=u_{8}=-2, \quad u_{5}=-2
$$

