PARABOLIC EQUATIONS

BENDER SCHMIDIT METHOD :

The one dimensional Heat equation $\frac{\partial^2 u}{\partial x^2} = a \frac{\partial u}{\partial t}$

This is an example of parabolic equations

AIM :

To solve
$$u_{xx} = a u_t$$
(1)

with boundary conditions $u(0,t) = T_0$ (2)

$$u(l,t) = T_l \qquad \dots \dots (3)$$

$$u(x,0) = f(x)$$
, $0 < x < l$ (4)

$$u_{i,j+1} = \lambda u_{i+1,j} + (1 - 2\lambda)u_{i,j} + \lambda u_{i-1,j} \bigcirc \dots (5)$$

ICIT FORMULA.
$$0 < \lambda \le \frac{1}{2}.$$

Equation (5) is called **EXPLICIT FORMULA**.

This formula is valid only if $0 < \lambda \le \frac{1}{2}$.

If we take $\lambda = \frac{1}{2}$ then Equation (5) becomes

$$u_{i,j+1} = \frac{1}{2} [\lambda u_{i-1,j} + u_{i+1,j}] \dots \dots \dots (6)$$

In this case $\lambda = \frac{1}{2}$ and $\lambda = \frac{1}{2}$

Equation (6) is called **BENDER SCHMIDIT RECCURENCE EQUATION**.

Example . 1: Solve $\frac{\partial^2 u}{\partial x^2} - 2 \frac{\partial u}{\partial t} = 0$ given u(0,t) = 0, u(4,t) = 0, u(x,0) = x(4-x). Assume h = 1. Find the values of u up to t = 5.

Solution :

Given $\frac{\partial^2 u}{\partial x^2} - 2 \frac{\partial u}{\partial t} = 0 \implies a = 2$. Also h = 1 [Given] Since $k = \frac{a h^2}{2} \implies k = 2 \frac{(1)^2}{2} = 1 \implies k = 1$ Given $u(0,t) = 0, \implies u(0,0) = (0,1) = u(0,2) = u(0,3) = u(0,4) = u(0,5) = 0$ Also $u(4,t) = 0, \implies u(4,0) = (4,1) = u(4,2) = u(4,3) = u(4,0) = u(5,0) = 0$ Since $u(x,0) = x(4-x) \implies u(0,0) = 0(4-0) = 0$

$$u(1,0) = 1(4-1) = 3$$
, $u(2,0) = 2(4-2) = 4$
 $u(3,0) = 3(4-3) = 3$, $u(4,0) = 4(4-4) = 0$

The values of $u_{i,j}$ are tabulated below

		x – dir	ection -	\rightarrow $(h-a)$	liff)		
	j∖i	0	1	2	3	4	
t - d	0	0	3	4	3	0	u(x,0) = x(4-x)
direction	1	0	2	3	2	0	
	2	0	1.5	2	1.5	0	
$\rightarrow (k$	3	0	1	1.5	1	0	
:-diff)	4	0	0.75	1	0.75	0	0
ff)	5	0	0.5	0.75	0.5	Nor	

Example. 2: Solve $u_t = u_{xx}$ subject to u(0,t) = 0, u(1,t) = 0 and $u(x,0) = \sin \pi x$, 0 < x < 1<u>حلای</u> Solution :

Given $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t} \implies a = 1.$

Since h & k are not given. Since $k = \frac{a h^2}{2} \implies k = 1 \frac{h^2}{2} = \frac{h^2}{2}$ Since the range is (0,1).

Let us choose h = 0.2.

$$\therefore \quad k = \frac{(0.2)^2}{2} = \frac{0.04}{2} = 0.02$$

Given u(0,t) = 0, $\Rightarrow u(0,0) = (0,0.02) = u(0,0.04) = u(0,0.06) = u(0,0.08) = u(0,0.1) = 0$ Also u(1,t) = 0, $\Rightarrow u(1,0) = (1,0.02) = u(1,0.04) = u(1,0.06) = u(1,0.08) = u(1,0.1) = 0$ Since $u(x, 0) = \sin \pi x \implies u(0, 0) = \sin \pi (0) = \sin 0 = 0$

$$u(0.2,0) = \sin \pi(0.2) = 0.5878$$
, $u(0.4,0) = \sin \pi(0.4) = 0.9511$
 $u(0.6,0) = \sin \pi(0.6) = 0.9511$, $u(0.8,0) = \sin \pi(0.8) = 0.5878$
 $u(1.0,0) = \sin \pi(1) = 0$

		x – dire	ction –	$\rightarrow (h-d)$	i ff)			
	j∖i	0	0.2	0.4	0.6	0.8	1.0	
t - d	0	0	0.5878	0.9511	0.9511	0.5878	0	$u(x,0)=\sin\pi x$
direction	0.02	0	0.4756	0.7695	0.7695	0.4756	0	
	0.04	0	0.3848	0.6225	0.6225	0.3848	0	
$\rightarrow (k$	0.06	0	0.3113	0.5036	0.5036	0.3113	0	
-diff	0.08	0	0.2518	0.4074	0.4074	0.2518	0	
ff)	0.10	0	0.2037	0.3296	0.3296	0.2037	0	
		u(0,t)=0			C	mol	u(0,t)=0	

The values of $u_{i,j}$ are tabulated below

Example . 3: Solve $32 u_t = u_{xx}$ taking h = 0.25 for t > 0, 0 < x < 1 and u(x, 0) = 0,

u(0,t) = 0, u(1,t) = t.

Solution :

Given $u_{xx} = 32 u_t \implies a = 32$. Also h = 0.25

Since $k = \frac{a h^2}{2} \implies k = 32^{(0,25)^2} = 1$. Given u(0,t) = 0, $\implies u(0,0) = (0,1) = u(0,2) = u3 = u(0,4) = u(0,5) = 0$

Also u(1,t) = t, $\Rightarrow u(1,0) = 0$, u(1,1) = 1, u(1,2) = 2, u(1,3) = 3, u(1,4) = 4, u(1,5) = 5

Since $u(x,0) = 0 \implies u(0,0) = 0$, u(0.25,0) = 0, u(0.50,0) = 0,

$$u(0.75,0) = 0$$
, $u(1.0,0) = 0$

The values of $u_{i,j}$ are tabulated below

	$x-direction \rightarrow (h-diff)$										
↓ I •	j∖i	0	0.25	0.50	0.75	1.0					
direa (k	0	0	0	0	0	0	u(x,0)=0				

1	0	0	0	0	1	
2	0	0	0	0.5	2	
3	0	0	0.25	1	3	
4	0	0.125	0.5	1.625	4	
5	0	0.25	0.875	2.25	5	
	u(0,t)=0				u(1,t) = t	

Example . 4: Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, $0 \le x \le 1$, $t \ge 0$ with u(x,0) = x(1-x), 0 < x < 1 and $u(0,t) = u(1,t) = 0 \ \forall t > 0$ using Explicit method with $\Delta x = 0.2$ for three time steps. **olution :** $u(0,t) = u(1,t) = 0 \ \forall t > 0$ using Explicit method with $\Delta x = 0.2$ for three time steps.

Solution :

Given $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \implies a = 1$. Also $\Delta x = h = 0.2$ Since $k = \frac{a h^2}{2} \implies k = \frac{(0.2)^2}{2} = 0.02.$ $u_{i,j+1} = \frac{1}{2} [\lambda u_{i-1,j} + u_{i+1,j}]$

Given u(0,t) = 0, $\Rightarrow u(0,0) = (0,1) = u(0,2) = u(0,4) = u(0,5) = 0$ Also u(1,t) = 0, $\Rightarrow u(1,0) = 0$, u(1,1) = 0, u(1,2) = 0, u(1,3) = 0, u(1,4) = 0, u(1,5) = 0

Since $u(x,0) = x(1-x) \implies u(0,0) = 0$, u(0.2,0) = 0.2(1-0.2) = 0.16,

$$u(0.4,0) = 0.4(1-0.4) = 0.24$$
, $u(0.6,0) = 0.24$, $u(0.8,0) = 0.16$

The values of $u_{i,j}$ are tabulated below

↓ ?	j∖i	0	0.2	0.4	0.6	0.8	1.0	
- direction (k-diff)	0	0	0.16	0.24	0.24	0.16	0	u(x,0)=0
	0.2	0	0.12	0.2	0.2	0.12	0	
on f)	0.4	0	0.1	0.16	0.16	0.1	0	

0.6	0	0.08	0.13	0.13	0.08	0	
0.8	0	0.065	0.105	0.105	0.065	0	
1.0	0	0.0525	0.085	0.085	0.0525	0	
	u(0,t)=0					u(1,t)=0	

CRANK-NICOLSON'S METHOD

DIFFERENCE EQUATION CORRESPONDING TO THE PARABOLIC EQUATION

 $\frac{\partial u}{\partial t} = \alpha^2 \; \frac{\partial^2 u}{\partial x^2} \; (\; IMPILICT \; METHOD)$

The Crank Nicolson's difference equation in the general form is given by

$$-\lambda u_{i-1,j+1} + (2\lambda + 2)u_{i,j+1} - \lambda u_{i+1,j+1} = \lambda u_{i-1,j} + (2 - 2\lambda)u_{i,j} + \lambda u_{i+1,j}$$

If $\lambda = 1$, the Crank Nicolson's difference equation is takes the form

$$-u_{i-1,j+1} + 4 u_{i,j+1} - u_{i+1,j+1} = u_{i-1,j} + u_{i+1,j}$$
$$u_{i,j+1} - u_{i+1,j+1} = u_{i-1,j} + u_{i+1,j}$$

Also
$$k = ah^2$$

Example:

Solve by Crank – Nicholson method the equation $u_{xx} = u_t$ subject to u(x, 0) = 0, u(0, t) = 0and u(1, t) = t, for two time steps.

Solution:

Here x ranges from 0 to 1, take h = 1/4. a = 1

:
$$k = ah^2$$
, $k = 1\left(\frac{1}{4}\right)^2 = \frac{1}{16}$.

We use the formula

$$u_{i,j+1} = \frac{1}{4} \left[u_{i+1,j+1} + u_{i-1,j+1} + u_{i-1,j} + u_{i+1,j} \right] - - - (1)$$

	0	0.25	0.5	0.75	1
0	0	0	0	0	0
$\frac{1}{16}$	0	u_1	<i>u</i> ₂	<i>u</i> ₃	$\frac{1}{16}$
$\frac{2}{16}$	0	u_4	u_5	u_6	$\frac{2}{16}$

$u_1 = \frac{1}{4} [0 + 0 + 0 + u_2]$	$4u_1 = u_2$	$4u_1 - u_2 = 0$						
$u_2 = \frac{1}{4} [0 + 0 + u_1 + u_3]$	$4u_2 = [u_1 + u_3]$	$-u_1 + 4u_2 - u_3 = 0$						
$u_3 = \frac{1}{4} \left[0 + 0 + u_2 + \frac{1}{16} \right]$	$4u_3 = u_2 + \frac{1}{16}$	$0u_1 - u_2 + 4u_3 = \frac{1}{16}$						
Solving we get $u_1 = 0.0011$, $u_2 = 0.0045$, $u_3 = 0.0168$								

$u_4 = \frac{1}{4} [0 + 0 + u_2 + u_5]$	$4u_4 = u_2 + u_5$	$4u_4 - u_5 = 0.0045$
$u_5 = \frac{1}{4}[u_1 + u_4 + u_3 + u_6]$	$4u_5 = 0.0011 + u_4 + 0.0168 + u_6$	$-u_4 + 4u_5 - u_6 = 0.0179$
$u_6 = \frac{1}{4} \left[u_2 + u_5 + \frac{1}{16} + \frac{2}{16} \right]$	$4u_6 = 0.0045 + u_5 + \frac{3}{16}$	$-u_5 + 4u_6 = 0.192$

Solving we get $u_4 = 0.005899$, $u_3 = 0.01913$, $u_6 = 0.052777$

Example:

Using Crank – Nicholson method, solve the equation $u_{xx} = 16u_t$ subject to u(x, 0) = 0, u(0, t) = 0and u(1,t) = 100t. Compute τ for one time step taking h = 1/4.

Solution:

Given h = 1/4. $a^2 = 16$, a = 4

:.
$$k = ah^2$$
, $k = 16\left(\frac{1}{4}\right)^2 = 1$.

We use the formula $u_{i,j+1} = \frac{1}{4} \left[u_{i+1,j+1} + u_{i-1,j+1} + u_{i-1,j} + u_{i+1,j} \right] - - - (1)$

	0	0.25	0.5	0.75	1
0	0	0	0	0	0
1	0	u_1	<i>u</i> ₂	u_3	100

$u_1 = \frac{1}{4} [0 + 0 + 0 + u_2]$	$4u_1 = u_2$	$4u_1 - u_2 = 0$
$u_2 = \frac{1}{4} [0 + 0 + u_1 + u_3]$	$4u_2 = [u_1 + u_3]$	$-u_1 + 4u_2 - u_3 = 0$
$u_3 = \frac{1}{4} [0 + 0 + u_2 + 100]$	$4u_3 = u_2 + 100$	$0u_1 - u_2 + 4u_3 = 100$

Solving we get $u_1 = 1.7857$, $u_2 = 7.1429$, $u_3 = 26.7857$

ONE DIMENSIONAL WAVE EQUATION

The wave equation $\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}$ is the simplest form of the hyperbolic equations.

The explicit formula for solving wave equation is given by

 $u_{i,j+1} = u_{i-1,j} + u_{i+1,j} - u_{i,j-1} \qquad \text{where } k = h/a$ Example: 1 Solve $y_{tt} = y_{xx}$ upto t = 0.5 with a spacing of 0.1 subject to y(0,t) = 0, y(1,t) = 0, $y_t(x,0) = 0$ and y(x,0) = 10 + x(10 - x). Solution: Given $y_{tt} = y_{xx} \implies \frac{\partial^2 y}{\partial t^2} = a^2 \frac{\partial^2 y}{\partial x^2} \implies a^2 = 1 \implies a = 1$. $h = 0.1 \implies k = \frac{h}{a} = \frac{0.1}{1} = 0.1$ The explicit formula for solving wave equation is given by $u_{i,j+1} = u_{i-1,j} + u_{i+1,j} - u_{i,j-1}$

y(x,0) = 10 + x(10 - x)

$$y(0.1,0) = 0.1 + 0.1(10 - 0.1) = 10.09$$

$$y(0.2,0) = 0.2 + 0.2(10 - 0.2) = 10.16$$

$$y(0.3,0) = 0.3 + 0.3(10 - 0.3) = 10.21$$

$$y(0.4,0) = 0.4 + 0.4(10 - 0.4) = 10.24$$

$$y(0.5,0) = 0.5 + 0.5(10 - 0.5) = 10.25$$

$$y(0.6,0) = 0.6 + 0.6(10 - 0.6) = 10.24$$

$$y(0.7,0) = 0.7 + 071(10 - 0.7) = 10.21$$

$$y(0.8,0) = 0.8 + 0.8(10 - 0.8) = 10.16$$

x/t	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
0	0	10.09	10.16	10.21	10.24	10.25	10.24	10.21	10.16	10.09	0
0.1	0	5.08	10.15	10.2	10.23	10.24	10.23	10.2	10.15	5.08	0
0.2	0	0.06	5.12	10.17	10.2	10.21	10.2	10.17	7.64	5.08	0
0.3	0	0.04	0.08	5.12	10.15	10.16	10.15	8.92	7.63	3.82	0
0.4	0	0.02	0.04	0.06	5.08	10.09	8.92	8.89	6.37	3.82	0
0.5	0	0	0	0	0	0	0	0	0	0	0
	y(0,t)=0										y(1,t)=0

y(0.9,0) = 0.9 + 0.9(10 - 0.9) = 10.09

Example: 2 Approximate the solution of the wave equation $\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}$, 0 < x < 1, t > 0,

 $u(0,t) = u(1,t) = 0, t > 0, \qquad u(x,0) = \sin 2\pi x, 0 \le x \le 1 \quad and \quad \frac{\partial u}{\partial t}(x,0) = 0, \qquad 0 \le x \le 1$ with $\Delta x = 0.25$ and $\Delta t = 0.25$ for three time steps.

Solution:

Given

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} \Rightarrow a^2 = 1 \Rightarrow a = 1.$$

$$\Delta x = h = 0.25 \text{ and } \Delta t = k = 0.25$$

The explicit formula for solving wave equation is given by

$$u_{i,j+1} = u_{i-1,j} + u_{i+1,j} - u_{i,j-1}$$

 $u(x, 0) = \sin 2\pi x$

$$u(0.0,0) = \sin 2\pi(0) = 0$$

 $u(0.25,0) = \sin 2\pi(0.25) = 1$
 $u(0.50,0) = \sin 2\pi(0.50) = 0$
 $u(0.75,0) = \sin 2\pi(0.75) = -1$

$$u(1.0,0) = \sin 2\pi(1) = 0$$

x/t	0	0.25	0.5	0.75	1
0	0	1	0	-1	0
0.25	0	0	0	0	0
0.5	0	-1	0	1	0
0.75	0	0	0	0	0
1	0	1	0	-1	0
	u(0,t)=0				u(1,t)=0

Example: 3 Solve $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$, 0 < x < 1, t > 0, u(0, t) = 0, u(1, t) = 0, $u(x, 0) = x - x^2$ and $\frac{\partial u}{\partial t}(x, 0) = 0$ taking h = 0.2 upto t = 1.

Solution:

Given $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} \implies a^2 = 1 \implies a = 1.$ $h = 0.2 \implies k = \frac{h}{a} = \frac{0.2}{1} = 0.2$

The explicit formula for solving wave equation is given by

$$u_{i,j+1} = u_{i-1,j} + u_{i+1,j} - u_{i,j-1}$$

 $u(x,0) = x - x^2$

$u(0,0) = 0 - 0^2 = 0$							
$u(0.2,0) = 0.2 - 0.2^{2} = 0.16$ $u(0.4,0) = 0.4 - 0.4^{2} = 0.24$							
$u(0.4,0) = 0.4 - 0.4^2 = 0.24$							
u(0.6,	$u(0.6,0) = 0.6 - 0.6^2 = 0.24$						
u(0.8.	$u(0.8,0) = 0.8 - 0.8^{2} = 0.16$ $u(1.0,0) = 1 - 1^{2} = 0$						
	$u(1,0,0) = 1, 1^2 = 0$						
$u(1.0,0) = 1 - 1^2 = 0$							
x/t	0	0.2	0.4	0.6	0.8		
0	0	0.16	0.24	0.24	0.16		
0.2	0	0.12	0.2	0.2	0.12		
0.4	0	-0.04	0.08	0.08	0.04		
0.6	0	-0.04	-0.08	-0.08	-0.04		
0.8	0	-0.12	-0.2	-0.2	-0.12		
1	0	-0.16	-0.24	-0.24	-0.16		
	u(0,t)=0				u(1,t)=0		

Example: 4 Solve $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$, 0 < x < 1, t > 0, u(0, t) = 0, u(1, t) = 0, $u(x, 0) = 100(x - x^2)$ and $\frac{\partial u}{\partial t}(x, 0) = 0$ taking h = 0.2 by using finite difference method for once time step.

Solution:

Given
$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} \Rightarrow a^2 = 1 \Rightarrow a = 1.$$

$$h = 0.25 \implies k = \frac{h}{a} = \frac{0.25}{1} = 0.25$$

The explicit formula for solving wave equation is given by

$$u_{i,j+1} = u_{i-1,j} + u_{i+1,j} - u_{i,j-1}$$

 $u(x, 0) = 100(x - x^2)$

 $u(0,0) = 100(0 - 0^2) = 0$

$$u(0.25,0) = 100(0.25 - 0.25^2) = 18.75$$

$$u(0.50,0) = 100(0.5 - 0.5^2) = 25$$

$$u(0.75,0) = 100(0.75 - 0.75^2) = 18.75$$

$$u(1.0,0) = 100(1-1^2) = 0$$

		-				1
x/t	0	0.25	0.5	0.75	1	P
0	0	18.75	25	18.75		
0.25	0	12.5	18.75	12.5		
0.5	0	0	0	0	0	
	u(0 ,t)= 0				u(1,t)=0	

TWO DIMENSIONAL LAPLACE EQUATION

I. ELLIPTIC EQUATIONS

The Laplace equation $\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$

The standard five point formula is given by

$$u_{i,j} = \frac{1}{4} \left[u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} \right]$$

The diagonal five point formula is given by

$$u_{i,j} = \frac{1}{4} \left[u_{i-1,j-1} + u_{i-1,j+1} + u_{i+1,j-1} + u_{i+1,j+1} \right]$$

Example: 1

Solve
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
, in $|x| < 1$, $|y| < 1$ with $h = \frac{1}{2}$ and $u(x, \pm 1) = x^2$ & $u(\pm 1, y) = y^2$
(i) $u(x, 1) = x^2, -1 < x < +1$
(ii) $u(x, -1) = x^2, -1 < x < +1$

(iii)
$$u(1, y) = y^2, -1 < y < +1$$

(iv) $u(-1, y) = y^2, -1 < y < +1$

Solution:

To find the other rough values, we use SFPF

$$u_{2} = \frac{1}{4} [0 + 0 + 0.25 + 0.25] = 0.125 \quad \{SFPF\}$$
$$u_{4} = \frac{1}{4} [0 + 0 + 0.25 + 0.25] = 0.125 \quad \{SFPF\}$$
$$u_{6} = \frac{1}{4} [0 + 0 + 0.25 + 0.25] = 0.125 \quad \{SFPF\}$$
$$u_{8} = \frac{1}{4} [0 + 0 + 0.25 + 0.25] = 0.125 \quad \{SFPF\}$$

Here after we use only SFPF.

First Iteration:

$$u_{1} = \frac{1}{4} [0.25 + 0.25 + 0.125 + 0.125] = 0.19$$

$$u_{2} = \frac{1}{4} [0 + 0.19 + 0.25 + 0] = 0.11$$

$$u_{3} = \frac{1}{4} [0.25 + 0.25 + 0.11 + 0.125] = 0.18$$

$$u_{4} = \frac{1}{4} [0 + 0.19 + 0 + 0.25] = 0.11$$

$$u_{5} = \frac{1}{4} [0.11 + 0.11 + 0.125 + 0.125] = 0.12$$

$$u_{6} = \frac{1}{4} [0 + 0.12 + 0.18 + 0.25] = 0.14$$

$$u_{7} = \frac{1}{4} [0.25 + 0.25 + 0.11 + 0.25] = 0.18$$

$$u_{8} = \frac{1}{4} [0 + 0.12 + 0.18 + 0.25] = 0.14$$

$$u_{9} = \frac{1}{4} [0.25 + 0.25 + 0.14 + 0.14] = 0.20$$
Second Iteration :
$$u_{1} = 0.19, \quad u_{2} = 0.11, \quad u_{3} = 0.18, \quad u_{4} = 0.11, \quad u_{5} = 0.12, \quad u_{6} = 0.14, \quad u_{7} = 0.18, \quad u_{8} = 0.14, \quad u_{9} = 0.20$$
Third Iteration :
$$u_{1} = 0.18, \quad u_{2} = 0.12, \quad u_{3} = 0.19, \quad u_{4} = 0.12, \quad u_{5} = 0.13, \quad u_{6} = 0.13, \quad u_{7} = 0.19, \quad u_{8} = 0.13, \quad u_{9} = 0.19$$

Poisson's Equation

An equation of the form $\nabla^2 u = f(x, y)$

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y) - (1)$$

Is called Poisson's equation where f(x, y) is a function of x & y.

The algorithm for solving Poisson's equation is

$$u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} - 4u_{i,j} = h^2 f(ih, jh) \quad --(2)$$

Example:

Solve $\nabla^2 u = -10(x^2 + y^2 + 10)$ over the square mesh with sides x = 0, y = 0, x = 3, y = 3 with u = 0 on the boundary and mesh length 1 unit.

Solution:

The boundary values at each side are equal, then $u_1 = u_4$. We need to find u_1 , u_2 and u_3 .

Applying (2) at the point C(i = 1, j = 1)

$$0 + u_4 + 0 + u_1 - 4u_3 = -10[1 + 1 + 10]$$
$$2u_1 - 4u_3 = -120 \dots \dots (5)$$

Solving the equations (3), (4) and (5), we get

$$u_1 = u_4 = 75$$
, $u_2 = 82.5$ and $u_3 = 67.5$

Example:

Solve $\nabla^2 u = 8x^2y^2$ for square mesh given u = 0 on the four boundaries dividing the square into 16 sub-squares of length 1 unit.

Solution: The values on the boundary are symmetric to each other.

 \therefore $u_1 = u_3 = u_7 = u_9$, $u_2 = u_4 = u_6 = u_8$ and u_5 not equal to any value

So we need to find u_1 , u_2 and u_5 .

The Partial differential equation is $\nabla^2 u = 8x^2y^2$, h = 1

Now,
$$u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} - 4u_{i,j} = h^2 f(ih, jh) - -(1)$$

 $u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} - 4u_{i,j} = 8 i^2 j^2 - -(2)$

Applying (2) at the point A(i = -1, j = -1) $0 + 0 + u_2 + u_4 - 4u_1 = 8 (-1)^2 (-1)^2$

$$-4u_1 + 2u_2 = 8 \dots (3)$$

Applying (2) at the point B(i = 0, j = 1)

$$u_1 + u_3 + u_5 - 4u_2 = 8(0)(1)$$

 $2u_1 - 4u_2 + u_5 = 0 \dots (4)$

Applying (2) at the point C(i = 0, j = 0)

$$u_4 + u_6 + u_2 + u_8 - 4u_5 = 8(0)(0)$$
$$4u_2 - 4u_5 = 0 \quad \dots \dots (5)$$

Solving the equations (3), (4) and (5), we get

$$u_1 = u_3 = u_7 = u_9 = -3$$
, $u_2 = u_4 = u_6 = u_8 = -2$, $u_5 = -2$