UNIT-1

SOLUTIONS OF AN EQUATIONS \& EIGEN VALUE PROBLES

NEWTONS METHOD OR NEWTON-RAPHSON METHOD

1. Find the positive root of $x^{4}-x=10$ correct to three decimal places using

Newton- Raphson method.

Solution:
Let $f(x)=x^{4}-x-10=0$.
Now, $f(0)=(0)^{4}-(0)-10=-10 \quad(-v e)$

$$
\begin{aligned}
& f(1)=(1)^{4}-(1)-10=-10 \quad(-v e) \\
& f(2)=(2)^{4}-(2)-10=+4 \quad(+v e)
\end{aligned}
$$

Therefore the root lies between $1 \& 2$.
Let us take $x_{0}=2\{$ Near to zero $\}$.
The Newton- Raphson formula is $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$ (1).

$$
\begin{gathered}
\text { Let } \begin{array}{c}
f(x)=x^{4}-x-10 \text { and } f^{1}(x)=4 x^{3}-1 \\
x_{1}=x_{0}-\left[\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}\right]=2-\left[\frac{f(2)}{f^{\prime}(2)}\right] . \\
x_{1}=2-\left[\frac{(2)^{4}-(2)-10}{4(2)^{3}-1}\right]=2-\left[\frac{4}{31}\right] . \\
x_{1}=1.8709 . \\
x_{2}=x_{1}-\left[\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}\right]=2-\left[\frac{f(1.8709)}{f^{\prime}(1.8709)}\right] . \\
x_{2}=1.8709-\left[\frac{(1.8709)^{4}-(1.8709)-10}{4(1.8709)^{3}-1}\right] . \\
x_{2}=1.8709-\left[\frac{0.3835}{25.199}\right] . \\
x_{2}=1.856 . \\
x_{3}=x_{2}-\left[\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}\right]=1.856-\left[\frac{f(1.856)}{f^{\prime}(1.856)}\right] . \\
x_{3}=1.856-\left[\frac{(1.856)^{4}-(1.856)-10}{4(1.856)^{3}-1}\right] . \\
x_{3}=1.856-\left[\frac{0.010}{24.574}\right] . \\
x_{3}=1.856 .
\end{array} .
\end{gathered}
$$

The root of the equation $x^{4}-x=10$ is 1.856 .
2. Using Newton's iterative method to find the root between 0 and 1 of $x^{3}=6 x-4$ correct to three decimal places.

Solution:
Let $f(x)=x^{3}-6 x+4=0$.
Now, $f(0)=(0)^{3}-6(0)+4=+4 \quad(+v e)$

$$
f(1)=(1)^{3}-6(1)+4=-1 \quad(-v e)
$$

Therefore the root lies between 0 \& 1 .
Let us take $x_{0}=1$ \{Near to zero $\}$.
The Newton- Raphson formula is $\quad x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \ldots$ (1).

$$
\begin{gathered}
\text { Let } \begin{array}{c}
f(x)=x^{3}-6 x+4 \text { and } f^{1}(x)=3 x^{2}-6 \\
x_{1}=x_{0}-\left[\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}\right]=1-\left[\frac{f(1)}{f^{\prime}(1)}\right] \cdot \\
x_{1}=1-\left[\frac{(1)^{3}-6(1)+4}{3(1)^{2}-6}\right]=1-\left[\frac{-1}{-3}\right] \\
x_{1}=0.666
\end{array} \\
x_{2}=x_{1}-\left[\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}\right]=0.666-\left[\frac{f(0.666)}{f^{\prime}(0.666)}\right] . \\
x_{2}=0.666-\left[\frac{(0.666)^{3}-6(0.666)+4}{3(0.666)^{2}-6}\right]=0.666-\left[\frac{0.28}{-4.65}\right] . \\
x_{2}=0.73 \\
x_{3}=x_{2}-\left[\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}\right]=0.73-\left[\frac{f(0.73)}{f^{\prime}(0.73)}\right] . \\
x_{3}=0.73-\left[\frac{(0.73)^{3}-6(0.73)+4}{3(0.73)^{2}-6}\right]=0.73-\left[\frac{0.009}{-4.4013}\right] .
\end{gathered}
$$

The root of the equation $x^{3}-6 x+4=0$ is 0.732 .
3. Find the positive root of $3 x-\cos x-1=0$ correct to six decimal places by Newton method.

Solution :
Let $f(x)=3 x-\cos x-1=0$.
Now, $f(0)=3(0)-\cos (0)-1=-2 \quad(-v e)$

$$
f(1)=3(1)-\cos (1)-1=1.459698 \quad(-v e)
$$

Therefore the root lies between 0 \& 1.
Let us take $x_{0}=\mathbf{1}$ \{Near to zero\}.
The Newton- Raphson formula is $\quad x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \ldots$

$$
\begin{gathered}
\text { Let } \begin{array}{c}
f(x)=3 x-\cos x-1 \quad \text { and } f^{1}(x)=3+\sin x \\
x_{1}=x_{0}-\left[\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}\right]=1-\left[\frac{f(1)}{f^{\prime}(1)}\right] . \\
x_{1}=1-\left[\frac{3(1)-\cos (1)-1}{3+\sin (1)}\right] . \\
x_{1}=0.62002 . \\
x_{2}= \\
x_{1}-\left[\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}\right]=0.62002-\left[\frac{f(0.62002)}{f^{\prime}(0.62002)}\right] . \\
x_{2}=0.62002-\left[\frac{3(0.62002)-\cos (0.62002)-1}{3+\sin (0.62002)}\right] . \\
x_{2}=0.60712 . \\
x_{3}= \\
x_{2}-\left[\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}\right]=0.60712-\left[\frac{f(0.60712)}{f^{\prime}(0.60712)}\right] . \\
x_{3}=0.60712-\left[\frac{3(0.60712)-\cos (0.60712)-1}{3+\sin (0.60712)}\right] .
\end{array} . \quad x_{3}=0.6071 . j .
\end{gathered}
$$

The root of the equation $x^{4}-x=10$ is $\mathbf{0 . 6 0 7 1 2}$.
4. Using Newton's iterative method solve $x \log _{10} x=12.34$ start with $x_{0}=10$.

Solution:
Let $f(x)=x \log _{10} x-12.34=0$ "
Now, $f(0)=(0)^{3}-6(0)+4=+4 \quad(+v e)$

$$
f(1)=(1)^{3}-6(1)+4=-1 \quad(-v e)
$$

Therefore the root lies between $0 \& 1$.
Let us take $x_{0}=1\{$ Near to zero $\}$.
The Newton- Raphson formula is $\quad x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \ldots$ (1).

$$
\begin{gathered}
\text { Let } f(x)=x^{3}-6 x+4 \text { and } f^{1}(x)=3 x^{2}-6 \\
x_{1}=x_{0}-\left[\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}\right]=1-\left[\frac{f(1)}{f^{\prime}(1)}\right] . \\
x_{1}=1-\left[\frac{(1)^{3}-6(1)+4}{3(1)^{2}-6}\right]=1-\left[\frac{-1}{-3}\right] . \\
x_{1}=0.666 . \\
x_{2}=x_{1}-\left[\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}\right]=0.666-\left[\frac{f(0.666)}{f^{\prime}(0.666)}\right] . \\
x_{2}=0.666-\left[\frac{(0.666)^{3}-6(0.666)+4}{3(0.666)^{2}-6}\right]=0.666-\left[\frac{0.28}{-4.65}\right] . \\
x_{2}=0.73 . \\
3
\end{gathered} .
$$

$$
\begin{gathered}
x_{3}=x_{2}-\left[\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}\right]=0.73-\left[\frac{f(0.73)}{f^{\prime}(0.73)}\right] . \\
x_{3}=0.73-\left[\frac{(0.73)^{3}-6(0.73)+4}{3(0.73)^{2}-6}\right]=0.73-\left[\frac{0.009}{-4.4013}\right] . \\
x_{3}=0.7320 .
\end{gathered}
$$

The root of the equation $x^{3}-6 x+4=0$ is 0.732 .
5. Find the positive root of $x^{3}-2 x-5=0$ Newton- Raphson-method.

Solution :
Let $f(x)=x^{3}-2 x-5=0$.
Now, $f(0)=(0)^{3}-2(0)-5=-5 \quad(-v e)$

$$
f(1)=(1)^{3}-2(1)-5=-6 \quad(-v e)
$$

$$
f(2)=(2)^{3}-2(2)-5=-1(-v e)
$$

$f(3)=(3)^{3}-2(3)-5=+16 \quad(+v e)$
Therefore the root lies between 2 \& 3.
Let us take $x_{0}=2\{$ Near to zero $\}$.
The Newton- Raphson formula is $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \ldots$ (1).

$$
\begin{gathered}
\text { Let } \quad f(x)=x^{3}-6 x+4 \text { and } f^{1}(x)=3 x^{2}-6 . \\
x_{1}=x_{0}-\left[\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}\right]=2-\left[\frac{f(2)}{f^{\prime}(2)}\right] . \\
x_{1}=2-\left[\frac{(2)^{3}-2(2)-5}{3(2)^{2}-6}\right]=2-\left[\frac{-1}{10}\right]=2.1 \\
x_{2}=2.1-\left[\frac{f(2.1)}{f^{\prime}(2.1)}\right]=1.8709-\left[\frac{0.061}{11.23}\right]=2.0946 \\
x_{3}=x_{2}-\left[\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}\right]=2.0946-\left[\frac{f(2.0946)}{f^{\prime}(2.0946)}\right]=2.0946
\end{gathered}
$$

The root of the equation $x^{3}-6 x+4=0$ is 2.0946 .
6. Find the positive root of $\cos x=x e^{x}$ by Newton- Raphson -method. Take $x_{0}=0.5$.

Solution :
Let $f(x)=\cos x-x e^{x}=0$.
Given $x_{0}=0.5$.
The Newton- Raphson formula is $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \ldots$ (1).

$$
\begin{gathered}
\text { Let } f(x)=\cos x-x e^{x} \text { and } \\
f^{1}(x)=-\sin x-x e^{x}-e^{x} \Rightarrow \quad f^{1}(x)=-\sin x-(x+1) e^{x}
\end{gathered}
$$

$$
\begin{gathered}
x_{1}=x_{0}-\left[\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}\right]=0.5-\left[\frac{f(0.5)}{f^{\prime}(0.5)}\right] . \\
x_{1}=0.5-\left[\frac{\cos (0.5)-0.5 e^{0.5}}{-\sin (0.5)-(0.5+1) e^{0.5}}\right]=0.5-\left[\frac{0.0532}{-2.9525}\right] . \\
\boldsymbol{x}_{1}=0.5180 . \\
\boldsymbol{x}_{2}=0.5178 . \\
\boldsymbol{x}_{3}=\mathbf{0 . 5 1 7 8} .
\end{gathered}
$$

The root of the equation $\cos \boldsymbol{x}=\boldsymbol{x} \boldsymbol{e}^{\boldsymbol{x}}$ is $\mathbf{0 . 5 1 7 8}$.
7. Using Newton's iterative method to find the negative root of $x^{2}+4 \sin x=0$.

Solution :
Let $f(x)=x^{2}+4 \sin x=0$.
Now, $f(0)=0^{2}+4 \sin (0)=+0 \quad(+v e)$

$$
\begin{aligned}
& f(1)=1^{2}+4 \sin (1)=+4.3659 \quad(+v e) \\
& f(2)=2^{2}+4 \sin (2)=+7.6372 \quad(+v e) \\
& f(-1)=-1^{2}+4 \sin (-1)=--2.3659 \quad(-v e) \\
& f(-2)=-2^{2}+4 \sin (-2)=+0.3628 \quad(+v e)
\end{aligned}
$$

Therefore the root lies between -1 \& - 2 .
Let us take $\boldsymbol{x}_{\mathbf{0}}=-\mathbf{2}$ \{Near to zero $\}$.
The Newton- Raphson formula is $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \ldots$ (1).

$$
\begin{gathered}
\text { Let } f(x)=x^{2}+4 \sin x \text { and } f^{1}(x)=2 x+4 \cos x \\
x_{1}=x_{0}-\left[\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}\right]=-2-\left[\frac{f(-2)}{f^{\prime}(-2)}\right] . \\
x_{1}=1-\left[\frac{(-2)^{2}+4 \sin (-2)}{2(-2)+4 \cos (-2)}\right]=-2-\left[\frac{0.3628}{-5.6646}\right] . \\
x_{1}=-1.9359 . \\
x_{2}=-1.9338 \\
x_{3}=-1.9338
\end{gathered}
$$

The root of the equation $\boldsymbol{x}^{2}+\mathbf{4} \sin \boldsymbol{x}=\mathbf{0}$ is $\mathbf{- 1 . 9 3 3 8}$.

FIXED POINT ITERATION OR ITERATION METHOD

The condition for convergence of a method
Let $f(x)=0$ be the given equation whose actual root is r . The equation $f(x)=0$ be written as $x=g(x)$. Let I be the interval containing the root $x=r$. If $\left|g^{\prime}(x)\right|<1$ for all x in I , then the sequence of approximations $x_{0}, x_{1}, x_{2}, \ldots \ldots x_{n}$ will converge to r, if the initial starting value x_{0} is chosen in I .

Note 1. Since $\left|x_{n}-r\right| \leq K\left|x_{n-1}-r\right|$ where K is a constant the convergence is linear and the convergence is of order 1 .

Note 2. The sufficient condition for the convergence is $\left|g^{\prime}(x)\right|<1$ for all x in I

1. Find the positive root of $x^{2}-2 x-3=0$ by Iteration method.

Solution :
Let $f(x)=x^{2}-2 x-3=0$.
Now, $f(0)=(0)^{2}-2(0)-3=-10 \quad(-v e)$

$$
f(1)=(0)^{2}-2(0)-3=-10 \quad(-v e)
$$

$$
f(2)=(0)^{2}-2(0)-3=+4 \quad(+v e)
$$

Therefore the root lies between $1 \& 2$.
Let us take $x_{0}=2\{$ Near to zero $\}$.

$$
\begin{gathered}
x^{2}-2 x-3=0 \Rightarrow x^{2}=2 x+3 \\
\Rightarrow x=\sqrt{2 x+3} \\
\Rightarrow x=g(x)=\sqrt{2 x+3}
\end{gathered}
$$

Let $x_{0}=2$

$$
\begin{gathered}
x_{1}=g\left(x_{0}\right)=\sqrt{2 x_{0}+3}=\sqrt{2(2)+3}=2.6457 \\
x_{2}=g\left(x_{1}\right)=\sqrt{2 x_{1}+3}=\sqrt{2(2.6457)+3}=2.8795 \\
x_{3}=g\left(x_{2}\right)=\sqrt{2 x_{2}+3}=\sqrt{2(2.8795)+3}=2.9595 \\
x_{4}=g\left(x_{3}\right)=\sqrt{2 x_{3}+3}=\sqrt{2(2.9595)+3}=2.9864 \\
x_{5}=g\left(x_{4}\right)=\sqrt{2 x_{4}+3}=\sqrt{2(2.9864)+3}=2.99549 \\
x_{6}=g\left(x_{5}\right)=\sqrt{2 x_{5}+3}=\sqrt{2(2.99549)+3}=2.9985 \\
x_{7}=g\left(x_{6}\right)=\sqrt{2 x_{6}+3}=\sqrt{2(2.9985)+3}=2.9995 \\
x_{8}=g\left(x_{7}\right)=\sqrt{2 x_{7}+3}=\sqrt{2(2.9995)+3}=2.9998 \\
x_{9}=g\left(x_{8}\right)=\sqrt{2 x_{8}+3}=\sqrt{2(2.9998)+3}=2.9999 \\
x_{10}=g\left(x_{9}\right)=\sqrt{2 x_{9}+3}=\sqrt{2(2.9999)+3}=2.9999
\end{gathered}
$$

Hence the root of the equation is $\boldsymbol{x}^{2}-2 x-3=0$ is 2.9999 .
2. Find the Real root of the equation $x^{3}+x^{2}-100$ by Fixed point iteration method.

Solution:
Let $f(x)=x^{3}+x^{2}-100=0$.

$$
\begin{array}{cl}
f(0)=(0)^{3}+(0)^{2}-100=-100 & (-v e) \\
f(1)=(1)^{3}+(1)^{2}-100=-98 & (-v e) .
\end{array}
$$

$$
\begin{array}{lll}
f(2)=(2)^{3}+(2)^{2}-100=-88 & (-v e) . \\
f(3)=(3)^{3}+(3)^{2}-100=-64 & (-v e) . \\
f(4)=(4)^{3}+(4)^{2}-100=-20 & (-v e) . \\
f(5)=(5)^{3}+(5)^{2}-100=+50 & (+v e) .
\end{array}
$$

The root lies between 4 \& 5 .

$$
\begin{gathered}
\text { Since } \quad x^{3}+x^{2}-100=0 \\
\Rightarrow \quad x^{2}(x+1)=100 \\
\Rightarrow \quad x^{2}=\frac{100}{(x+1)} \\
\Rightarrow \quad x=g(x)=\frac{10}{\sqrt{x+1}}=10[x+1]^{\frac{1}{2}}
\end{gathered}
$$

Now, $\quad g^{\prime}(x)=10\left(\frac{1}{2}\right)[x+1]^{\left(-\frac{3}{2}\right)}=5[x+1]^{\left(-\frac{3}{2}\right)}$

$$
\begin{aligned}
& g^{\prime}(4)=5[4+1]\left(-\frac{3}{2}\right)<1 \\
& g^{\prime}(5)=5[5+1]\left(-\frac{3}{2}\right)<1
\end{aligned}
$$

So that we can use the iteration method.
Let $x_{0}=4$

$$
\begin{gathered}
x_{1}=g\left(x_{0}\right)=\frac{10}{\sqrt{x_{0}+1}}=\frac{10}{\sqrt{4+1}}=\frac{10}{2.236}=4.4721 \\
x_{2}=g\left(x_{1}\right)=\frac{10}{\sqrt{x_{1}+1}}=\frac{10}{\sqrt{4.4721+1}}=\frac{10}{2.1147}=4.2748 \\
x_{3}=g\left(x_{2}\right)=\frac{10}{\sqrt{x_{2}+1}}=\frac{10}{\sqrt{4.2748+1}}=4.3541 \\
x_{4}=g\left(x_{3}\right)=\frac{10}{\sqrt{x_{3}+1}}=\frac{10}{\sqrt{4.3541+1}}=4.3217 \\
x_{5}=g\left(x_{4}\right)=\frac{10}{\sqrt{x_{4}+1}}=\frac{10}{\sqrt{4.3217+1}}=4.3348 \\
x_{6}=g\left(x_{5}\right)=\frac{10}{\sqrt{x_{5}+1}}=\frac{10}{\sqrt{4.3348+1}}=4.3295 \\
x_{7}=g\left(x_{6}\right)=\frac{10}{\sqrt{x_{6}+1}}=\frac{10}{\sqrt{4.3295+1}}=4.3316 \\
x_{8}=g\left(x_{7}\right)=\frac{10}{\sqrt{x_{7}+1}}=\frac{10}{\sqrt{4.3316+1}}=4.3307 \\
x_{9}=g\left(x_{8}\right)=\frac{10}{\sqrt{x_{8}+1}}=\frac{10}{\sqrt{4.3307+1}}=4.3311
\end{gathered}
$$

$$
\begin{aligned}
& x_{10}=g\left(x_{9}\right)=\frac{10}{\sqrt{x_{9}+1}}=\frac{10}{\sqrt{4.3311+1}}=4.3310 \\
& x_{11}=g\left(x_{10}\right)=\frac{10}{\sqrt{x_{10}+1}}=\frac{10}{\sqrt{4.3310+1}}=4.3310
\end{aligned}
$$

Hence the root of the equation is $\boldsymbol{x}^{\mathbf{3}}+\boldsymbol{x}^{2}-\mathbf{1 0 0}=\mathbf{0}$ is $\mathbf{4 . 3 3 1 0}$.
3. Find the real root of the equation $\cos x=3 x-1$ correct to five decimal places using fixed point iteration method.

Solution:

$$
\begin{aligned}
& \text { Let } f(x)=\cos x-3 x+1=0 \\
& f(0)=\cos (0)-3(0)+1=2
\end{aligned} \quad(+v e) .
$$

The root lies between 0 \& 1 .

$$
\begin{gathered}
\text { Since } \quad \cos x-3 x+1=0 \\
\Rightarrow \quad 3 x=\cos x+1 \\
\Rightarrow \quad x=\frac{1}{3}(1+\cos x) \\
\Rightarrow \quad x=g(x)=\frac{1}{3}(1+\cos x)
\end{gathered}
$$

Now, $g^{\prime}(x)=\frac{1}{3}(-\sin x)=-\frac{1}{3} \sin x$

$$
\begin{aligned}
& g^{\prime}(0)=-\frac{1}{3} \sin (0)=0<1 \\
& g^{\prime}(1)=-\frac{1}{3} \sin (1)=0.284<1
\end{aligned}
$$

So that we can use the iteration method.
Let $x_{0}=4$

$$
\begin{gathered}
x_{1}=g\left(x_{0}\right)=\frac{1}{3}\left(1+\cos x_{0}\right)=\frac{1}{3}(1+(-0.6536))=0.11545 \\
x_{2}=g\left(x_{1}\right)=\frac{1}{3}\left(1+\cos x_{1}\right)=\frac{1}{3}(1+\cos (0.11545))=0.6644 \\
x_{3}=g\left(x_{2}\right)=\frac{1}{3}\left(1+\cos x_{2}\right)=\frac{1}{3}(1+\cos [0.6644])=0.5957 \\
x_{4}=g\left(x_{3}\right)=\frac{1}{3}\left(1+\cos x_{3}\right)=0.6092 \\
x_{5}=g\left(x_{4}\right)=\frac{1}{3}\left(1+\cos x_{4}\right)=0.60669 \\
x_{6}=g\left(x_{5}\right)=\frac{1}{3}\left(1+\cos x_{5}\right)=0.60717 \\
x_{7}=g\left(x_{6}\right)=\frac{1}{3}\left(1+\cos x_{6}\right)=0.60708
\end{gathered}
$$

$$
\begin{aligned}
& x_{8}=g\left(x_{7}\right)=\frac{1}{3}\left(1+\cos x_{7}\right)=0.60710 \\
& x_{9}=g\left(x_{8}\right)=\frac{1}{3}\left(1+\cos x_{8}\right)=0.60710
\end{aligned}
$$

Hence the root of the equation is $\cos \boldsymbol{x}=\mathbf{3 x - 1}$ is $\mathbf{0 . 6 0 7 1 0}$.
4. Solve by iteration method $e^{x}-3 x=0$

Solution :

$$
\begin{gathered}
\text { Let } f(x)=e^{x}-3 x=0 . \\
f(0)=e^{0}-3(0)=1 \quad(+v e) . \\
f(1)=e^{1}-3(1)=-\quad(+v e) .
\end{gathered}
$$

The root lies between 0 \& 1 .

$$
\begin{gathered}
\text { Since } \quad e^{x}-3 x=0 \\
\Rightarrow 3 x=e^{x} \Rightarrow x=\frac{1}{3}\left(e^{x}\right) \\
\Rightarrow \quad x=g(x)=\frac{1}{3}\left(e^{x}\right)
\end{gathered}
$$

Now, $\left|g^{\prime}(x)\right|=\frac{1}{3}\left(e^{x}\right)$

$$
\begin{aligned}
& \left|g^{\prime}(0)\right|=\frac{1}{3} e^{0}=\frac{1}{3} \quad<1 \\
& \left|g^{\prime}(1)\right|=\frac{1}{3} e^{1}=\frac{e}{3} \quad<1
\end{aligned}
$$

So that we can use the iteration method.
Let $x_{0}=0$

$$
\begin{gathered}
x_{1}=g\left(x_{0}\right)=\frac{1}{3} e^{x_{0}}=\frac{1}{3}\left(e^{0}\right)=0.3334 \\
x_{2}=g\left(x_{1}\right)=\frac{1}{3} e^{x_{1}}=\frac{1}{3}\left(e^{0.3334}\right)=0.4652 \\
x_{3}=g\left(x_{2}\right)=\frac{1}{3} e^{x_{2}}=0.5308 \\
x_{14}=g\left(x_{9}\right)=\frac{1}{3} e^{x_{13}}=0.6186
\end{gathered}
$$

Hence the root of the equation is $\boldsymbol{e}^{\boldsymbol{x}}-\mathbf{3 x}=\mathbf{0}$ is $\mathbf{0 . 6 1 8}$.

GAUSS ELIMINATION AND GAUSS JORDAN METHOD

1. Solve the system of equations by (i) Gauss elimination method (ii) Gauss Jordan method.
$2 x+4 y+8 z=41,4 x+6 y+10 z=56,6 x+8 y+10 z=64$.
Solution : (i). Gauss elimination method :

Let the given system of equations be

$$
\begin{aligned}
& 2 x+4 y+8 z=41 \\
& 4 x+6 y+10 z=56 \\
& 6 x+8 y+10 z=64
\end{aligned}
$$

The given system is equivalent to $A X=B$

$$
\begin{gathered}
{\left[\begin{array}{ccc}
2 & 4 & 8 \\
4 & 6 & 10 \\
6 & 8 & 10
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
41 \\
56 \\
64
\end{array}\right]} \\
\text { Here }[A, B]=\left[\begin{array}{llcl}
2 & 4 & 8 & 41 \\
4 & 6 & 10 & 56 \\
6 & 8 & 10 & 64
\end{array}\right]
\end{gathered}
$$

Now, we need to make A as an upper triangular matrix.
Fix the first row, change second and third row by using first row.

$$
\left.[A, B] \sim\left[\begin{array}{cccc}
2 & 4 & 8 & 41 \\
0 & -2 & -6 & -26 \\
0 & 4 & -14 & -59
\end{array}\right] \quad \begin{array}{c}
R_{2} \Leftrightarrow R_{2}-2 R_{1} \\
R_{3} \Leftrightarrow R_{3}-3 R_{j}
\end{array}\right)
$$

Fix the first \& second row, change the third row by using second row.

$$
[A, B] \sim\left[\begin{array}{cccc}
2 & 4 & 8 & 41 \\
0 & -2 & -6 & -26 \\
0 & 0 & -2 & -7
\end{array}\right] \underbrace{}_{R_{3} \Leftrightarrow R_{3}-2 R_{2}}
$$

This is an upper triangular matrix. From the above matrix we have

$$
\begin{gathered}
-2 z=-7 \Rightarrow z=\frac{7}{2}=3.5 \\
-2 y-6 z=-26 \Rightarrow-2 y-6\left(\frac{7}{2}\right)=-26 \\
\Rightarrow-2 y=-26+21 \Rightarrow-2 y=-5 \\
\Rightarrow y=\frac{5}{2}=2.5 \\
2 x+4 y+8 z=41 \\
\Rightarrow 2 x+4\left(\frac{5}{2}\right)+8\left(\frac{7}{2}\right)=41 \Rightarrow 2 x=41-10-28 \\
\Rightarrow 2 x=3 \Rightarrow x=\frac{3}{2}=1.5
\end{gathered}
$$

Hence the solution is $\quad x=1.5, y=2.5$ and $z=3.5$
(ii) Gauss Jordan method: Let the given system of equations be

$$
\begin{aligned}
& 2 x+4 y+8 z=41 \\
& 4 x+6 y+10 z=56 \\
& 6 x+8 y+10 z=64
\end{aligned}
$$

The given system is equivalent to $A X=B$

$$
\begin{gathered}
{\left[\begin{array}{ccc}
2 & 4 & 8 \\
4 & 6 & 10 \\
6 & 8 & 10
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
41 \\
56 \\
64
\end{array}\right]} \\
\text { Here }[A, B]=\left[\begin{array}{llll}
2 & 4 & 8 & 41 \\
4 & 6 & 10 & 56 \\
6 & 8 & 10 & 64
\end{array}\right]
\end{gathered}
$$

Now, we need to make A as a diagonal matrix.
Fix the first row, change second and third row by using first row.

$$
[A, B] \sim\left[\begin{array}{cccc}
2 & 4 & 8 & 41 \\
0 & -2 & -6 & -26 \\
0 & 4 & -14 & -59
\end{array}\right] \quad \begin{gathered}
R_{2} \Leftrightarrow R_{2}-2 R_{1} \\
R_{3} \Leftrightarrow R_{3}-3 R_{1}
\end{gathered}
$$

Fix the first \& second row, change the third row by using second row.

$$
[A, B] \sim\left[\begin{array}{cccc}
2 & 4 & 8 & 41 \\
0 & -2 & -6 & -26 \\
0 & 0 & -2 & -7
\end{array}\right] \quad R_{3} \Leftrightarrow R_{3}-2 R_{2}
$$

Fix the third row, change first and second row by using third row.

$$
[A, B] \sim\left[\begin{array}{cccc}
2 & 4 & 0 & 13 \\
0 & -2 & 0 & -5 \\
0 & 0 & -2 & -7
\end{array}\right] \quad \begin{aligned}
& R_{1} \Leftrightarrow R_{1}+4 R_{3} \\
& R_{2} \Leftrightarrow R_{2}-3 R_{3}
\end{aligned}
$$

Fix the second \& third row, change first by using second row.

$$
[A, B] \sim\left[\begin{array}{cccc}
2 & 0 & 0 & 3 \\
0 & -2 & 0 & -5 \\
0 & 0 & -2 & -7
\end{array}\right] \quad R_{1} \Leftrightarrow R_{1}+2 R_{2}
$$

Which is a diagonal matrix, from the matrix, we have

$$
\begin{aligned}
& 2 x=3 \Rightarrow x=\frac{3}{2}=1.5 \\
& -2 y=-5 \Rightarrow y=\frac{5}{2}=2.5 \\
& -2 z=-7 \Rightarrow z=\frac{7}{2}=3.5
\end{aligned}
$$

Hence the solution is

$$
x=1.5, y=2.5 \text { and } z=3.5
$$

2. Solve the system of equations by (I) Gauss elimination method (ii) Gauss Jordan method.

$$
2 x+3 y-z=5, \quad 4 x+4 y-3 z=3, \quad 2 x-3 y+2 z=2 .
$$

Solution:

(i). Gauss elimination method:

Let the given system of equations be $\quad 2 x+3 y-z=5$

$$
\begin{gathered}
4 x+4 y-3 z=3 \\
2 x-3 y+2 z=2
\end{gathered}
$$

The given system is equivalent to $A X=B$

$$
\left[\begin{array}{ccc}
2 & 3 & -1 \\
4 & 4 & -3 \\
2 & -3 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
5 \\
3 \\
2
\end{array}\right]
$$

$$
\text { Here }[A, B]=\left[\begin{array}{cccc}
2 & 3 & -1 & 5 \\
4 & 4 & -3 & 3 \\
2 & -3 & 2 & 2
\end{array}\right]
$$

Now, we need to make A as a upper triangular matrix.
Fix the first row, change second and third row by using first row.

$$
[A, B] \sim\left[\begin{array}{cccc}
2 & 3 & -1 & 5 \\
0 & -2 & -1 & -7 \\
0 & -6 & 3 & -3
\end{array}\right] \quad \begin{aligned}
& R_{2} \Leftrightarrow R_{2}-2 R_{1} \\
& R_{3} \Leftrightarrow R_{3}-R_{1}
\end{aligned}
$$

Fix the first \& second row, change the third row by using second row.

$$
[A, B] \sim\left[\begin{array}{cccc}
2 & 3 & -1 & 5 \\
0 & -2 & -1 & -7 \\
0 & 0 & 6 & 18
\end{array}\right] \quad R_{3} \Leftrightarrow R_{3}-3 R_{2}
$$

This is an upper triangular matrix. From the above matrix we have

$$
\begin{gathered}
6 z=18 \Rightarrow z=3 \\
-2 y-z=-7 \Rightarrow-2 y-3=-7 \\
\Rightarrow-2 y=--7+3 \Rightarrow-2 y=-4 \\
\Rightarrow y=2 \\
2 x+3 y-z=5 \\
\Rightarrow 2 x+3(2)-3=5 \Rightarrow 2 x=5-6+3 \\
\Rightarrow x=1
\end{gathered}
$$

Hence the solution is

$$
x=1, y=2 \text { and } z=3
$$

(ii) Gauss Jordan method:

Let the given system of equations be

$$
2 x+3 y-z=5
$$

$$
\begin{gathered}
4 x+4 y-3 z=3 \\
2 x-3 y+2 z=2
\end{gathered}
$$

The given system is equivalent to $A X=B$

$$
\begin{gathered}
{\left[\begin{array}{ccc}
2 & 3 & -1 \\
4 & 4 & -3 \\
2 & -3 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
5 \\
3 \\
2
\end{array}\right]} \\
\text { Here }[A, B]=\left[\begin{array}{cccc}
2 & 3 & -1 & 5 \\
4 & 4 & -3 & 3 \\
2 & -3 & 2 & 2
\end{array}\right]
\end{gathered}
$$

Now, we need to make A as a diagonal matrix.
Fix the first row, change second and third row by using first row.

$$
[A, B] \sim\left[\begin{array}{cccc}
2 & 3 & -1 & 5 \\
0 & -2 & -1 & -7 \\
0 & -6 & 3 & -3
\end{array}\right] \quad \begin{aligned}
& R_{2} \Leftrightarrow R_{2}-2 R_{1} \\
& R_{3} \Leftrightarrow R_{3}-R_{1}
\end{aligned}
$$

Fix the first \& second row, change the third row by using second row.

$$
[A, B] \sim\left[\begin{array}{cccc}
2 & 3 & -1 & 5 \\
0 & -2 & -1 & -7 \\
0 & 0 & 6 & 18
\end{array}\right] \quad R_{3} \Leftrightarrow R_{3}-3 R_{2}
$$

Fix the third row, change first and second row by using third row.

$$
[A, B] \sim\left[\begin{array}{cccc}
12 & 18 & 0 & 48 \\
0 & -12 & 0 & -24 \\
0 & 0 & 6 & 18
\end{array}\right] \quad \begin{aligned}
& R_{1} \Leftrightarrow 6 R_{1}+R_{3} \\
& R_{2} \Leftrightarrow 6 R_{2}+R_{3}
\end{aligned}
$$

Fix the second \& third row, change first by using second row.

$$
[A, B] \sim\left[\begin{array}{cccc}
144 & 0 & 0 & 144 \\
0 & -12 & 0 & -24 \\
0 & 0 & 6 & 18
\end{array}\right] \quad R_{1} \Leftrightarrow 12 R_{1}+18 R_{2}
$$

Which is a diagonal matrix, from the matrix, we have

$$
\begin{gathered}
144 x=144 \Rightarrow x=1 \\
-12 y=-24 \Rightarrow y=2 \\
6 z=18 \Rightarrow z=3
\end{gathered}
$$

Hence the solution is $\boldsymbol{x}=\mathbf{1}, \boldsymbol{y}=\mathbf{2}$ and $\mathbf{z}=\mathbf{3}$
3. Solve the system of equations by (i) Gauss elimination method (ii) Gauss Jordan method.

$$
10 x-2 y+3 z=23,2 x+10 y-5 z=-33, \quad 3 x-4 y+10 z=41
$$

Solution:

(i). Gauss elimination method:

Let the given system of equations be $\quad 10 x-2 y+(3 z)=23$

$$
\begin{aligned}
& 2 x+10 y-5 z=-33 \\
& 3 x-4 y+10 z=41
\end{aligned}
$$

The given system is equivalent to $A X=B$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
10 & -2 & 3 \\
2 & 10 & -5 \\
3 & -4 & 10
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
23 \\
-33 \\
41
\end{array}\right]} \\
& \text { Here }[A, B]=\left[\begin{array}{cccc}
10 & -2 & 3 & 23 \\
2 & 10 & -5 & -33 \\
3 & -4 & 10 & 41
\end{array}\right]
\end{aligned}
$$

Now, we need to make A as a upper triangular matrix.
Fix the first row, change second and third row by using first row.

$$
[A, B] \sim\left[\begin{array}{cccc}
10 & -2 & 3 & 23 \\
0 & 52 & -28 & -188 \\
0 & -34 & 91 & 341
\end{array}\right] \quad \begin{aligned}
& R_{2} \Leftrightarrow 5 R_{2}-R_{1} \\
& R_{3} \Leftrightarrow 10 R_{3}-3 R_{1}
\end{aligned}
$$

Fix the first \& second row, change the third row by using second row.

$$
[A, B] \sim\left[\begin{array}{cccc}
10 & -2 & 3 & 23 \\
0 & 52 & -28 & -188 \\
0 & 0 & 3780 & 11340
\end{array}\right] \quad R_{3} \Leftrightarrow 52 R_{3}+34 R_{2}
$$

This is an upper triangular matrix. From the above matrix we have

$$
3780 z=11340 \Rightarrow z=3
$$

$$
52 y-28 z=-188 \Rightarrow 52 y-28(3)=-188
$$

$$
\begin{aligned}
\Rightarrow 52 y & =-188+84=104 \\
& \Rightarrow y=-2 \\
10 x-2(-2) & +3(3)=23 \Rightarrow x=1
\end{aligned}
$$

Hence the solution is $x=1, y=-2$ and $z=3$

(ii) Gauss Jordan method:

Let the given system of equations be

$$
\begin{gathered}
10 x-2 y+3 z=23 \\
2 x+10 y-5 z=-33 \\
3 x-4 y+10 z=41
\end{gathered}
$$

The given system is equivalent to $A X=B$

$$
\begin{gathered}
{\left[\begin{array}{ccc}
10 & -2 & 3 \\
2 & 10 & -5 \\
3 & -4 & 10
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
23 \\
-33 \\
41
\end{array}\right]} \\
\text { Here }[A, B]=\left[\begin{array}{cccc}
10 & -2 & 3 & 23 \\
2 & 10 & -5 & -33 \\
3 & -4 & 10 & 41
\end{array}\right]
\end{gathered}
$$

Now, we need to make A as a diagonal matrix.
Fix the first row, change second and thirdrow by using first row.

$$
[A, B] \sim\left[\begin{array}{cccc}
10 & -2 & 3 & 23 \\
0 & 52 & -28 & -188 \\
0 & -34 & 91 & 341
\end{array}\right] \quad \begin{aligned}
& R_{2} \Leftrightarrow 5 R_{2}-R_{1} \\
& R_{3} \Leftrightarrow 10 R_{3}-3 R_{1}
\end{aligned}
$$

Fix the first \& second row, changethe third row by using second row.

$$
R_{3} \Leftrightarrow 52 R_{3}+34 R_{2}
$$

Fix the third row, change first and second row by using third row.
\([A, B] \sim\left[\begin{array}{cccc}12600 \& -2520 \& 0 \& 17640

0 \& 7020 \& 0 \& -14040

0 \& 0 \& 3780 \& 11340\end{array}\right] \quad\)| $R_{1} \Leftrightarrow 1260 R_{1}-R_{3}$ |
| :--- |
| $R_{2} \Leftrightarrow 135 R_{2}+3 R_{3}$ |

Fix the second \& third row, change first by using second row.

$$
[A, B] \sim\left[\begin{array}{cccc}
88452000 & 0 & 0 & 88452000 \\
0 & 7020 & 0 & -14040 \\
0 & 0 & 3780 & 11340
\end{array}\right] \quad R_{1} \Leftrightarrow 7020 R_{1}+2520 R_{2}
$$

Which is a diagonal matrix, from the matrix, we have

$$
\begin{gathered}
3780 z=11340 \Rightarrow z=3 \\
7020 y=-14040 \Rightarrow y=-2 \\
88452000 x=88452000
\end{gathered} \Rightarrow x=1 .
$$

Hence the solution is $x=1, y=-2$ and $z=3$
4. Solve the system of equations by (i) Gauss elimination method (ii) Gauss Jordan method.

$$
2 x+3 y=3 \quad 7 x-3 y=4
$$

Solution: (i) Gauss elimination method

$$
\begin{aligned}
& \text { Let the given system be } \\
& \qquad \begin{array}{r}
2 x+3 y=3 \\
7 x-3 y=4
\end{array}
\end{aligned}
$$

The given system is equivalent to $A X=B$

$$
\begin{gathered}
{\left[\begin{array}{cc}
2 & 3 \\
7 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
3 \\
4
\end{array}\right]} \\
\text { Here }[A, B]=\left[\begin{array}{ccc}
2 & 3 & 3 \\
7 & -3 & 4
\end{array}\right]
\end{gathered}
$$

Now, we need to make A as an uper triangular matrix.
Fix the first row, change second by using first row.

$$
[A, B]=\left[\begin{array}{ccc}
2 & 3 & 3 \\
0 & -27 & -13
\end{array}\right] \quad R_{2} \Leftrightarrow 2 R_{2}-7 R_{1}
$$

This is an upper triangular matrix. From the above matrix we have

$$
\begin{gathered}
-27 z=-13 \Rightarrow z=\frac{13}{27}=0.4814 \\
2 x+3 y=3 \Rightarrow 2 x+3(0.4814)=3 \\
\Rightarrow 2 x=3-3(0.4814)=1.5556 \\
\Rightarrow x=\frac{1.5556}{2}=0.77778
\end{gathered}
$$

Hence the solution is $\boldsymbol{x}=\mathbf{0 . 7 7 7 8}, \boldsymbol{y}=\mathbf{0 . 4 8 1 4}$
(i). Gauss - Jordan Method :

The given system is equivalent to $A X=B$

$$
\left[\begin{array}{cc}
2 & 3 \\
7 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
3 \\
4
\end{array}\right]
$$

$$
\text { Here }[A, B]=\left[\begin{array}{ccc}
2 & 3 & 3 \\
7 & -3 & 4
\end{array}\right]
$$

Now, we need to make A as a Diagonal triangular matrix.
Fix the first row, change second by using first row.

$$
[A, B]=\left[\begin{array}{ccc}
2 & 3 & 3 \\
0 & -27 & -13
\end{array}\right] \quad R_{2} \Leftrightarrow 2 R_{2}-7 R_{1}
$$

Fix the Second row, change first by using second row.

$$
[A, B]=\left[\begin{array}{ccc}
54 & 0 & 42 \\
0 & -27 & -13
\end{array}\right] \quad R_{1} \Leftrightarrow 27 R_{1}+3 R_{2}
$$

which is a diagonal matrix, from the matrix we have

$$
\begin{gathered}
54 x=42 \Rightarrow x=0.7778 \\
-27 z=-13 \Rightarrow z=0.4814
\end{gathered}
$$

5. Solve the system of equations by (i) Gauss elimination method (ii) Gauss Jordan method.

$$
11 x+3 y=17, \quad 2 x+7 y=16
$$

Solution : (i) Gauss elimination method

Let the given system be

$$
11 x+3 y=17
$$

$$
2 x+7 y=16
$$

The given system is equivalent to $A X=B$

$$
\begin{gathered}
{\left[\begin{array}{cc}
11 & 3 \\
2 & 7
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
17 \\
16
\end{array}\right]} \\
\text { Here }[A, B]=\left[\begin{array}{ccc}
11 & 3 & 17 \\
2 & 7 & 16
\end{array}\right]
\end{gathered}
$$

Now, we need to make A as an uper triangular matrix.
Fix the first row, change second by using first row.

$$
[A, B]=\left[\begin{array}{ccc}
11 & 3 & 17 \\
0 & 71 & 142
\end{array}\right] \quad R_{2} \Leftrightarrow 11 R_{2}-2 R_{1}
$$

This is an upper triangular matrix. From the above matrix we have

$$
\begin{gathered}
71 z=142 \Rightarrow z=\frac{142}{71}=2 \\
11 x+3 y=17 \Rightarrow 11 x+3(2)=17 \\
\Rightarrow 11 x=17-6=11 \\
\Rightarrow x=1
\end{gathered}
$$

Hence the solution is $\boldsymbol{x}=\mathbf{1}, \boldsymbol{y}=\mathbf{2}$
(ii). Gauss - Jordan Method :

The given system is equivalent to $A X=B$

$$
\begin{gathered}
{\left[\begin{array}{cc}
11 & 3 \\
2 & 7
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
17 \\
16
\end{array}\right]} \\
\text { Here }[A, B]=\left[\begin{array}{ccc}
11 & 3 & 17 \\
2 & 7 & 16
\end{array}\right]
\end{gathered}
$$

Now, we need to make A as a Diagonal triangular matrix.
Fixthe first row, change second by using firstrow.

$$
[A, B]=\left[\begin{array}{ccc}
11 & 3 & 17 \\
0 & 71 & 142
\end{array}\right] \quad R_{2} \Leftrightarrow 11 R_{2}-2 R_{1}
$$

Fix the Second row, change first by using second row.

$$
[A, B]=\left[\begin{array}{ccc}
781 & 0 & 781 \\
0 & 71 & 142
\end{array}\right] \quad R_{1} \Leftrightarrow 71 R_{1}-3 R_{2}
$$

Which is a diagonal matrix, from the matrix we have

$$
\begin{gathered}
781 x=781 \Rightarrow x=1 \\
71 y=142 \Rightarrow y=2
\end{gathered}
$$

Hence the solution is $\boldsymbol{x}=\mathbf{1}, \boldsymbol{y}=\mathbf{2}$

ITERATIVE METHODS

Gauss Jacobi and Gauss Siedal Method of Iteration

Consider the system of equations,

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1} z=d_{1} \\
& a_{2} x+b_{2} y+c_{2} z=d_{2}
\end{aligned}
$$

$$
\begin{equation*}
a_{3} x+b_{3} y+c_{3} z=d_{3} \tag{1}
\end{equation*}
$$

If the given system of equations obeys the condition, we can use Gauss Jacobi or Gauss Siedal Iteration methods.

$$
\left|a_{1}\right|>\left|b_{1}\right|+\left|c_{1}\right|, \quad\left|b_{2}\right|>\left|a_{2}\right|+\left|c_{2}\right|, \quad\left|c_{3}\right|>\left|a_{3}\right|+\left|b_{3}\right|
$$

Gauss Jacobi Method: The general $n^{\text {th }}$ order iteration is

$$
\begin{align*}
& x^{(n+1)}=\frac{1}{a_{1}}\left(d_{1}-b_{1} y^{(r)}-c_{1} z^{(r)}\right) \\
& y^{(n+1)}=\frac{1}{b_{2}}\left(d_{2}-a_{2} x^{(r)}-c_{2} z^{(r)}\right) \\
& z^{(n+1)}=\frac{1}{c_{3}}\left(d_{3}-a_{3} x^{(r)}-b_{3} y^{(r)}\right) \tag{2}
\end{align*}
$$

Gauss -Siedal Method:

$$
\begin{align*}
& x^{(n+1)}=\frac{1}{a_{1}}\left(d_{1}-b_{1} y^{(r)}-c_{1} z^{(r)}\right) \\
& y^{(n+1)}=\frac{1}{b_{2}}\left(d_{2}-a_{2} x^{(r+1)}-\delta_{2} z^{(r)}\right) \\
& \left.z^{(n+1)}=\frac{1}{c_{3}}\left(d_{3}-a_{3} x^{(r+1)}-b_{3} y\right)^{(r+1)}\right) \tag{3}
\end{align*}
$$

1. Solve the following system of equations by Gauss-Jacobi and Gauss-Siedal method of Iteration.

$$
27 x+6 y-z=85, x+y+54 z=110, \quad 6 x+15 y+2 z=72
$$

Solution : As the coefficient matrix is"not diagonally dominant in the coefficient matrix we rearrange the equations,

$$
\begin{gathered}
27 x+6 y-z=85 \\
6 x+15 y+2 z=72 \\
x+y+54 z=110
\end{gathered}
$$

Since, $\quad|27|>|6|+|1|, \quad|15|>|6|+|2|, \quad|54|>|1|+|1|$
So that we can use Gauss iterative method,
Since the diagonal elements are dominant in the coefficient matrix, we rewrite $\boldsymbol{x}, \boldsymbol{y}, \mathbf{z}$ as follows

$$
\begin{aligned}
& x=\frac{1}{27}(85-6 y+z) \\
& y=\frac{1}{15}(72-6 x-2 z) \\
& z=\frac{1}{54}(110-x-y)
\end{aligned}
$$

Gauss Jacobi Method: Let the initial values be $\boldsymbol{x}=\mathbf{0}, \boldsymbol{y}=\mathbf{0}, \mathbf{z}=\mathbf{0}$

$1^{\text {st }}$ Iteration :

$$
x^{(1)}=\frac{1}{27}[85-6(0)+(0)]=\frac{1}{27}[85]=3.148
$$

$$
\begin{gathered}
y^{(1)}=\frac{1}{15}[72-6(0)-2(0)]=\frac{1}{15}[72]=4.8 \\
z^{(1)}=\frac{1}{54}[110-(0)-(0)]=\frac{1}{54}[110]=2.037
\end{gathered}
$$

$2^{\text {nd }}$ Iteration :

$$
\begin{gathered}
x^{(2)}=\frac{1}{27}\left(85-6 y^{(1)}+z^{(1)}\right)=\frac{1}{27}[85-6(4.8)+(2.037)]=2.157 \\
y^{(2)}=\frac{1}{15}\left(72-6 x^{(1)}-2 z^{(1)}\right)=\frac{1}{15}[72-6(3.148)-2(2.037)]=3.269 \\
z^{(2)}=\frac{1}{54}\left(110-x^{(1)}-y^{(1)}\right)=\frac{1}{54}[110-(3.148)-(4.8)]=1.890
\end{gathered}
$$

$3^{\text {rd }}$ Iteration :

$$
\begin{aligned}
& x^{(3)}=\frac{1}{27}\left(85-6 y^{(2)}+z^{(2)}\right)=\frac{1}{27}[85-6(3.269)+(1.890)]=2.492 \\
& y^{(3)}=\frac{1}{15}\left(72-6 x^{(2)}-2 z^{(2)}\right)=\frac{1}{15}[72-6(2.157)-2(1.890)]=3.685 \\
& z^{(3)}=\frac{1}{54}\left(110-x^{(2)}-y^{(2)}\right)=\frac{1}{54}[110-(2.157)-(3.269)]=1.937
\end{aligned}
$$

$4^{\text {th }}$ Iteration :

$$
\begin{gathered}
x^{(4)}=\frac{1}{27}\left(85-6 y^{(3)}+z^{(3)}\right)=\frac{1}{27}[85-6(3.685)+(1.937)]=2.401 \\
y^{(4)}=\frac{1}{15}\left(72-6 x^{(3)}-2 z^{(3)}\right)=\frac{1}{15}[72-6(2.492)-2(1.937)]=3.545 \\
z^{(4)}=\frac{1}{54}\left(110-x^{(3)}-y^{(3)}\right)=\frac{1}{54}[110-(2.492)-(3.685)]=1.923
\end{gathered}
$$

$5^{\text {th }}$ Iteration :

$$
\begin{gathered}
x^{(5)}=\frac{1}{27}\left(85-6 y^{(4)}+z^{(4)}\right)=\frac{1}{27}[85-6(3.545)+(1.923)]=2.432 \\
y^{(5)}=\frac{1}{15}\left(72-6 x^{(4)}-2 z^{(4)}\right)=\frac{1}{15}[72-6(2.401)-2(1.923)]=3.583 \\
z^{(5)}=\frac{1}{54}\left(110-x^{(4)}-y^{(4)}\right)=\frac{1}{54}[110-(2.401)-(3.545)]=1.927
\end{gathered}
$$

$6^{\text {th }}$ Iteration :

$$
\begin{gathered}
x^{(6)}=\frac{1}{27}\left(85-6 y^{(5)}+z^{(5)}\right)=\frac{1}{27}[85-6(3.583)+(1.927)]=2.423 \\
y^{(6)}=\frac{1}{15}\left(72-6 x^{(5)}-2 z^{(5)}\right)=\frac{1}{15}[72-6(2.432)-2(1.1927)]=3.570 \\
z^{(6)}=\frac{1}{54}\left(110-x^{(5)}-y^{(5)}\right)=\frac{1}{54}[110-(2.432)-(3.583)]=1.926
\end{gathered}
$$

$7^{\text {th }}$ Iteration :

$$
\begin{gathered}
x^{(7)}=\frac{1}{27}\left(85-6 y^{(6)}+z^{(6)}\right)=\frac{1}{27}[85-6(3.570)+(1.926)]=2.426 \\
y^{(7)}=\frac{1}{15}\left(72-6 x^{(6)}-2 z^{(6)}\right)=\frac{1}{15}[72-6(2.423)-2(1.926)]=3.574 \\
z^{(7)}=\frac{1}{54}\left(110-x^{(6)}-y^{(6)}\right)=\frac{1}{54}[110-(2.423)-(3.570)]=1.926
\end{gathered}
$$

$8^{\text {th }}$ Iteration :

$$
\begin{gathered}
x^{(8)}=\frac{1}{27}\left(85-6 y^{(7)}+z^{(7)}\right)=\frac{1}{27}[85-6(3.574)+(1.926)]=2.425 \\
y^{(8)}=\frac{1}{15}\left(72-6 x^{(7)}-2 z^{(7)}\right)=\frac{1}{15}[72-6(2.426)-2(1.926)]=3.573 \\
z^{(8)}=\frac{1}{54}\left(110-x^{(7)}-y^{(7)}\right)=\frac{1}{54}[110-(2.426)-(6.547)]=1.926
\end{gathered}
$$

$9^{\text {nd }}$ Iteration :

$$
\begin{aligned}
& x^{(9)}=\frac{1}{27}\left(85-6 y^{(8)}+z^{(8)}\right)=\frac{1}{27}[85-6(3.573)+(1.926)]=2.426 \\
& y^{(9)}=\frac{1}{15}\left(72-6 x^{(8)}-2 z^{(8)}\right)=\frac{1}{15}[72-6(2.425)-2(1.926)]=3.573 \\
& z^{(9)}=\frac{1}{54}\left(110-x^{(8)}-y^{(8)}\right)=\frac{1}{54}[110-(2.425)-(3.573)]=1.926
\end{aligned}
$$

$10^{\text {nd }}$ Iteration :

$$
\begin{aligned}
& x^{(10)}=\frac{1}{27}\left(85-6 y^{(9)}+z^{(9)}\right)=\frac{1}{27}[85-6(3.573)+(1.926)]=2.426 \\
& y^{(10)}=\frac{1}{15}\left(72-6 x^{(9)}-2 z^{(9)}\right)=\frac{1}{15}[72-6(2.426)-2(1.926)]=3.573 \\
& z^{(10)}=\frac{1}{54}\left(110-x^{(9)}-y^{(9)}\right)=\frac{1}{54}[110-(2.426)-(3.573)]=1.926
\end{aligned}
$$

Hence $\boldsymbol{x}=2.426, y=3.573$ and $z=1.926$, correct to three decimal places.

Gauss Siedal Method:

Let the initial values be $\boldsymbol{y}=\mathbf{0}, \boldsymbol{z}=\mathbf{0}$

$1^{\text {st }}$ Iteration :

$$
\begin{gathered}
x^{(1)}=\frac{1}{27}\left(85-6 y^{(0)}+z^{(0)}\right)=\frac{1}{27}[85-6(0)+(0)]=3.148 \\
y^{(1)}=\frac{1}{15}\left(72-6 x^{(1)}-2 z^{(0)}\right)=\frac{1}{15}[72-6(3.148)-2(0)]=3.541 \\
z^{(1)}=\frac{1}{54}\left(110-x^{(1)}-y^{(1)}\right)=\frac{1}{54}[110-3.148-3.541]=1.913
\end{gathered}
$$

$2^{\text {nd }}$ Iteration :

$$
x^{(2)}=\frac{1}{27}\left(85-6 y^{(1)}+z^{(1)}\right)=\frac{1}{27}[85-6(3.541)+(1.913)]=2.432
$$

$$
\begin{gathered}
y^{(2)}=\frac{1}{15}\left(72-6 x^{(2)}-2 z^{(1)}\right)=\frac{1}{15}[72-6(2.432)-2(1.913)]=3.572 \\
z^{(2)}=\frac{1}{54}\left(110-x^{(2)}-y^{(2)}\right)=\frac{1}{54}[110-(2.432)-(3.572)]=1.926
\end{gathered}
$$

$3^{\text {rd }}$ Iteration :

$$
\begin{aligned}
x^{(3)}=\frac{1}{27}\left(85-6 y^{(2)}+z^{(2)}\right)=\frac{1}{27}[85-6(3.572)+(1.926)]=2.426 \\
y^{(3)}=\frac{1}{15}\left(72-6 x^{(3)}-2 z^{(2)}\right)=\frac{1}{15}[72-6(2.426)-2(1.926)]=3.573 \\
z^{(3)}=\frac{1}{54}\left(110-x^{(3)}-y^{(3)}\right)=\frac{1}{54}[110-(2.426)-(3.573)]=1.926
\end{aligned}
$$

$4^{\text {th }}$ Iteration :

$$
\begin{aligned}
& x^{(4)}=\frac{1}{27}\left(85-6 y^{(3)}+z^{(3)}\right) \\
&=\frac{1}{27}[85-6(3.573)+(1.926)]=2.426 \\
& y^{(4)}=\frac{1}{15}\left(72-6 x^{(4)}-2 z^{(3)}\right)=\frac{1}{15}[72-6(2.426)-2(1.926)]=3.573 \\
& z^{(4)}=\frac{1}{54}\left(110-x^{(4)}-y^{(4)}\right)=\frac{1}{54}[110-(2.426)-(3.573)]=1.926
\end{aligned}
$$

Hence $\boldsymbol{x}=2.426, y=3.573$ and $\mathbf{z}=1.926$, correct to three decimal places.
2. Solve the following system of equations by Gauss-Jacobi and Gauss-Siedal method of Iteration.
$4 x+2 y+z=14, x+5 y-z=10, x+y+8 z=20$.
Solution :

$$
\begin{aligned}
& 4 x+2 y+z=14 \\
& x+5 y-z=10 \\
& x+y+8 z=20
\end{aligned}
$$

Since,

$$
|4|>|2|+|1|, \quad \bigcup 5|>|1|+|1|, \quad| 8|>|1|+|1|
$$

So that we use Gauss iterative method,
Since the diagonal elements are dominant in the coefficient matrix, we rewrite x, y, z as follows

$$
\begin{aligned}
& x=\frac{1}{4}(14-2 y-z) \\
& y=\frac{1}{5}(10-x+z) \\
& z=\frac{1}{8}(20-x-y)
\end{aligned}
$$

Gauss Jacobi Method :

Let the initial values be $\boldsymbol{x}=\mathbf{0}, \boldsymbol{y}=\mathbf{0}, \mathbf{z}=\mathbf{0}$
$1^{\text {st }}$ Iteration :

$$
x^{(1)}=\frac{1}{4}[14-2(0)-(0)]=3.5
$$

$$
\begin{gathered}
y^{(1)}=\frac{1}{5}[10-(0)+(0)]=2 \\
z^{(1)}=\frac{1}{8}[20-(0)-(0)]=2.5
\end{gathered}
$$

$2^{\text {nd }}$ Iteration :

$$
\begin{gathered}
x^{(2)}=\frac{1}{4}\left(14-2 y^{(1)}-z^{(1)}\right)=\frac{1}{4}[14-2(2)-(2.5)]=1.875 \\
y^{(2)}=\frac{1}{5}\left(10-x^{(1)}+z^{(1)}\right)=\frac{1}{5}[10-(3.5)+(2.5)]=1.8 \\
z^{(2)}=\frac{1}{8}\left(20-x^{(1)}-y^{(1)}\right)=\frac{1}{8}[20-(3.5)-(2)]=1.8125
\end{gathered}
$$

We form the Iterations in the table

Iteration	\boldsymbol{x}	\boldsymbol{y}	\mathbf{z}
1	3.5	2	2.5
2	1.875	1.8	1.8125
3	2.1093	1.9875	2.0406
4	1.9961	1.98626	1.9879
5	2.0098	1.9983	2.0022
6	2.0003	1.9984	1.9989
7	2.0010	1.99972	2.0001
8	2.0001	1.99982	1.9999
9	2.0001	1.99996	2.00000
10	2.0000	2.0000	2.0000

Hence the solution is $x=2, y=2$ and $z_{1}=2$.

Gauss Siedal Method:

Let the initial values be $\boldsymbol{y}=\mathbf{0}, \boldsymbol{z}=\mathbf{0}$
$1^{\text {st }}$ Iteration :

$$
\begin{aligned}
& x^{(1)}=\frac{1}{4}\left(14-2 y^{(0)}-z^{(0)}\right)=\frac{1}{4}[14-2(0)-(0)]=3.5 \\
& y^{(1)}=\frac{1}{5}\left(10-x^{(1)}+z^{(0)}\right)=\frac{1}{5}[10-(3.5)+(0)]=1.3 \\
& z^{(1)}=\frac{1}{8}\left(20-x^{(1)}-y^{(1)}\right)=\frac{1}{8}[20-(3.5)-(1.3)]=1.9
\end{aligned}
$$

$2^{\text {nd }}$ Iteration:

$$
\begin{aligned}
& x^{(2)}=\frac{1}{4}\left(14-2 y^{(1)}-z^{(1)}\right)=\frac{1}{4}[14-2(1.3)-(1.9)]=2.375 \\
& y^{(2)}=\frac{1}{5}\left(10-x^{(2)}+z^{(1)}\right)=\frac{1}{5}[10-(2.375)+(1.9)]=1.905 \\
& z^{(2)}=\frac{1}{8}\left(20-x^{(2)}-y^{(2)}\right)=\frac{1}{8}[20-(2.375)-(1.905)]=1.965
\end{aligned}
$$

We form the Iterations in the table

Iteration	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}

1	3.5	1.3	1.9
2	2.375	1.905	1.965
3	2.056	1.982	1.995
4	2.010	1.997	1.999
5	2.002	1.999	2
6	2.001	2	2
7	2	2	2
8	2	2	2

Hence the solution is $\boldsymbol{x}=\mathbf{2}, \boldsymbol{y}=\mathbf{2}$ and $\mathbf{z}=\mathbf{2}$.
3. Solve the following system of equations by Gauss-Jacobi and Gauss-Siedal method of Iteration.

$$
10 x-5 y-2 z=3, \quad 4 x-10 y+3 z=-3, \quad x+6 y+10 z=-3
$$

Solution :

$$
\begin{aligned}
& 10 x-5 y-2 z=3 \\
& 4 x-10 y+3 z=-3 \\
& x+6 y+10 z=-3
\end{aligned}
$$

Since, $\quad|10|>|5|+|2|, \quad|10|>|4|+|3|, \quad|10|>|1|+|6|$
So that we use Gauss iterative method,
Since the diagonal elements are dominant in the coefficient matrix, we rewrite $\mathrm{x}, \mathrm{y}, \mathrm{z}$ as follows

$$
\begin{aligned}
& x=\frac{1}{10}(3+5 y+2 z) \\
& y=\frac{1}{10}(3+4 x+3 z) \\
& z=\frac{1}{10}(-3-x-6 y)
\end{aligned}
$$

Gauss Jacobi Method :

Let the initial values be $\boldsymbol{x}=\mathbf{0}, \boldsymbol{y}=\mathbf{0}, \boldsymbol{z}=\mathbf{0}$
$1^{\text {st }}$ Iteration :

$$
\begin{aligned}
& x^{(1)}=\frac{1}{10}[3+5(0)+2(0)]=0.3 \\
& y^{(1)}=\frac{1}{10}[3+4(0)+3(0)]=0.3 \\
& z^{(1)}=\frac{1}{10}[-3-(0)-6(0)]=-0.3
\end{aligned}
$$

$2^{\text {nd }}$ Iteration :

$$
\begin{aligned}
& x^{(2)}=\frac{1}{10}\left(3+5 y^{(1)}+2 z^{(1)}\right)=\frac{1}{10}[3+5(0.3)+2(-0.3)]=0.39 \\
& y^{(2)}=\frac{1}{10}\left(3+4 x^{(1)}+3 z^{(1)}\right)=\frac{1}{10}[3+4(0.3)+3(-0.3)]=0.33 \\
& z^{(2)}=\frac{1}{10}\left(-3-x^{(1)}-6 y^{(1)}\right)=\frac{1}{10}[-3-(0.3)-6(0.3)]=-0.51
\end{aligned}
$$

Iteration	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}
1	0.3	0.3	-0.3

2	0.39	0.33	-0.51
3	0.363	0.303	-0.537
4	0.3441	0.2841	-0.5181
5	0.33843	0.2822	-0.50487
6	0.340126	0.283911	-0.503163
7	0.3413229	0.2851015	-0.2043592
8	0.34167891	0.2852214	-0.50519319
9	0.341572062	0.285113607	-0.505300731

Hence $\boldsymbol{x}=\mathbf{0 . 3 4 2}, \boldsymbol{y}=\mathbf{0 . 2 8 5}$ and $\mathbf{z}=-\mathbf{0 . 5 0 5}$ correct to three decimal places.

Gauss Siedal Method:

Let the initial values be $\boldsymbol{y}=\mathbf{0}, \boldsymbol{z}=\mathbf{0}$

$1^{\text {st }}$ Iteration :

$$
\begin{gathered}
x^{(1)}=\frac{1}{4}\left(3+5 y^{(0)}+2 z^{(0)}\right)=\frac{1}{10}[3+5(0)+2(0)]=0.3 \\
y^{(1)}=\frac{1}{5}\left(3+4 x^{(1)}+3 z^{(0)}\right)=\frac{1}{10}[3+4(0.3)+3(0)]=0.42 \\
z^{(1)}=\frac{1}{8}\left(-3-x^{(1)}-y^{(1)}\right)=\frac{1}{10}[-3-(0.3)-6(0.42)]=-0.582
\end{gathered}
$$

$2^{\text {nd }}$ Iteration :

$$
\begin{gathered}
x^{(2)}=\frac{1}{4}\left(3+5 y^{(1)}+2 z^{(1)}\right)=\frac{1}{10}[3+5(0.42)+2(-0.582)]=0.3936 \\
y^{(2)}=\frac{1}{5}\left(3+4 x^{(2)}+3 z^{(1)}\right)=\frac{1}{10}[3+4(0.3936)+3(-0.582)]=0.28284 \\
z^{(2)}=\frac{1}{8}\left(-3-x^{(2)}-6 y^{(2)}\right)=\frac{1}{10}[-3-(0.39396)-6(0.28284)]=-0.509064
\end{gathered}
$$

Iteration	\boldsymbol{x}	\boldsymbol{y}	\mathbf{z}
1	0.3	0.42	-0.582
2	0.3936	0.28284	-0.509064
3	0.3396072	0.28312364	-0.503834928
4	0.34079485	0.28516746	-0.50517996
5	0.3415547	0.28506792	-0.505196229
6	0.341497	0.2850390	-0.5051728
7	0.341489	0.28504212	-0.5051737

Hence $\boldsymbol{x}=\mathbf{0 . 3 4 2}, \boldsymbol{y}=\mathbf{0 . 2 8 5}$ and $\mathbf{z}=-\mathbf{0 . 5 0 5}$ correct to three decimal places.
4. Solve the following system of equations by Gauss-Jacobi and Gauss-Siedal method of Iteration.
$8 x-3 y+2 z=20,4 x+11 y-z=33, \quad 6 x+3 y+12 z=35$

Solution :

Let the given system be

$$
\begin{aligned}
& 8 x-3 y+2 z=20 \\
& 4 x+11 y-z=33
\end{aligned}
$$

$$
6 x+3 y+12 z=35
$$

Since,

$$
|8|>|3|+|2|, \quad|11|>|4|+|1|, \quad|12|>|6|+|3|
$$

So that we use Gauss iterative method,
Since the diagonal elements are dominant in the coefficient matrix, we rewrite x, y, z as follows

$$
\begin{gathered}
x=\frac{1}{8}(20+3 y-2 z) \\
y=\frac{1}{11}(33-4 x+z) \\
z=\frac{1}{12}(35-6 x-3 y)
\end{gathered}
$$

Gauss Jacobi Method :

Let the initial values be $\boldsymbol{x}=\mathbf{0}, \boldsymbol{y}=\mathbf{0}, \boldsymbol{z}=\mathbf{0}$

Iteration	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}
1	2.5	3.0	2.916666
2	2.895833	2.356060	0.916666
3	3.154356	2.030303	0.879735
4	3.041430	1.930937	0.831913
5	3.016873	1.969654	0.912717
6	3.010441	1.985930	0.915817
7	3.015770	1.988550	0.914964
8	3.016946	1.986535	0.911644
9	3.017039	1.985805	0.911560
10	3.016786	1.985764	0.911696

Gauss Siedal Method:

Let the initial values be $x=0, y=0$

Iteration	\boldsymbol{x}	\boldsymbol{y}	\mathbf{z}
1	2.5	2.090909	1.143939
2	2.998106	2.013774	0.914170
3	3.026623	1.982516	0.907726
4	3.016512	1.985607	0.912009
5	3.01660	1.985964	0.911876
6	3.016767	1.985892	0.911810
7	3.016757	1.985889	0.911816

5. Solve by Gauss - Siedal method correct to four decimal places.
$x-2 y=-3$ and $2 x+25 y=15$.
Solution :

$$
\begin{gathered}
x-2 y=-3 \text { and } 2 x+25 y=15 \\
x=2 y+3
\end{gathered}
$$

$$
y=\frac{1}{25}[15-2 x]
$$

Let the initial value be $\boldsymbol{y}=\mathbf{0}$
$1^{\text {st }}$ Iteration :

$$
\begin{gathered}
x^{(1)}=-3+2 y=-3+2[0]=-3 \\
y^{(1)}=\frac{1}{25}\left(15-2 x^{(1)}\right)=\frac{1}{25}[15-2(-3)]=0.84
\end{gathered}
$$

$2^{\text {nd }}$ Iteration:

$$
\begin{gathered}
x^{(2)}=-3+2 y^{(1)}=-3+2[0.84]=-1.32 \\
y^{(2)}=\frac{1}{25}\left(15-2 x^{(2)}\right)=\frac{1}{25}[15-2(-1.32)]=0.7056
\end{gathered}
$$

We form the table as follows

Iteration	\boldsymbol{x}	\boldsymbol{y}
1	-3	0.84
2	-1.32	0.7056
3	-1.5888	0.7271
4	-1.5858	0.7237
5	-1.5526	0.7242
6	-1.5516	0.7241
7	-1.5518	0.7241
8	-1.5518	0.7241

Hence $\boldsymbol{x}=-\mathbf{1 . 5 5 1 8}, \boldsymbol{y}=\mathbf{0 . 7 2 4 1}$ correct to four decimal places.

EIGEN VALES OF A MATRIX BY POWER METHOD

1. Using power method find the all Eigen value and the corresponding Eigen vector of the matrix $A=\left[\begin{array}{lll}1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$.
Solution : Let $X_{0}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ be the initial vector.
Therefore,

$$
\begin{gathered}
A X_{1}=\left[\begin{array}{lll}
1 & 6 & 1 \\
1 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=1\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=1 X_{2} \\
A X_{2}=\left[\begin{array}{lll}
1 & 6 & 1 \\
1 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
7 \\
3 \\
0
\end{array}\right]=7\left[\begin{array}{c}
1 \\
0.4286 \\
0
\end{array}\right]=7 X_{3} \\
A X_{3}=\left[\begin{array}{lll}
1 & 6 & 1 \\
1 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{c}
1 \\
0.4286 \\
0
\end{array}\right]=\left[\begin{array}{c}
3.574 \\
1.8572 \\
0
\end{array}\right]=3.574\left[\begin{array}{c}
1 \\
0.52 \\
0
\end{array}\right]=3.574 X_{4}
\end{gathered}
$$

$$
\begin{gathered}
A X_{4}=\left[\begin{array}{lll}
1 & 6 & 1 \\
1 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{c}
1 \\
0.52 \\
0
\end{array}\right]=\left[\begin{array}{c}
4.12 \\
2.04 \\
0
\end{array}\right]=4.12\left[\begin{array}{c}
1 \\
0.4951 \\
0
\end{array}\right]=4.12 X_{5} \\
A X_{5}=\left[\begin{array}{lll}
1 & 6 & 1 \\
1 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{c}
1 \\
0.4951 \\
0
\end{array}\right]=\left[\begin{array}{c}
3.9706 \\
1.9902 \\
0
\end{array}\right]=3.9706\left[\begin{array}{c}
1 \\
0.5012 \\
0
\end{array}\right]=3.9706 X_{6} \\
A X_{6}=\left[\begin{array}{lll}
1 & 6 & 1 \\
1 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{c}
1 \\
0.5012 \\
0
\end{array}\right]=\left[\begin{array}{c}
4.0072 \\
2.0024 \\
0
\end{array}\right]=4.0072\left[\begin{array}{c}
1 \\
0.4997 \\
0
\end{array}\right]=4.0072 X_{7} \\
A X_{7}=\left[\begin{array}{lll}
1 & 6 & 1 \\
1 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{c}
1 \\
0.4997 \\
0
\end{array}\right]=\left[\begin{array}{c}
3.9982 \\
1.9994 \\
0
\end{array}\right]=3.9982\left[\begin{array}{c}
1 \\
0.5000 \\
0
\end{array}\right]=3.9982 X_{8} \\
A X_{8}=\left[\begin{array}{lll}
1 & 6 & 1 \\
1 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{c}
1 \\
0.50 \\
0
\end{array}\right]=\left[\begin{array}{l}
4 \\
2 \\
0
\end{array}\right]=4\left[\begin{array}{c}
1 \\
0.5000 \\
0
\end{array}\right]=4 X_{9}
\end{gathered}
$$

\therefore The dominant Eigen value $=4$.
Corresponding Eigen vector is $\left[\begin{array}{c}1 \\ 0.5 \\ 0\end{array}\right]$.
To find the Second Eigen value :
Let $B=A-\lambda I \Rightarrow B=A-4 I$.

$$
B=\left[\begin{array}{lll}
1 & 6 & 1 \\
1 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]-4\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
-3 & 6 & 1 \\
1 & -2 & 2 \\
0 & 0 & -2
\end{array}\right]
$$

We need to find the dominant Eigen value for the matrix B.
Let $Y_{0}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ be the initial vector.

$$
\begin{gathered}
B Y_{1}=\left[\begin{array}{ccc}
-3 & 6 & 1 \\
1 & -2 & 2 \\
0 & 0 & -2
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right]=-3\left[\begin{array}{c}
1 \\
-0.3333 \\
0
\end{array}\right]=-3 Y_{2} \\
B Y_{2}=\left[\begin{array}{ccc}
-3 & 6 & 1 \\
1 & -2 & 2 \\
0 & 0 & -2
\end{array}\right]\left[\begin{array}{c}
1 \\
-0.3333 \\
0
\end{array}\right]=\left[\begin{array}{c}
-5 \\
1.6666 \\
0
\end{array}\right]=-5\left[\begin{array}{c}
1 \\
-0.3333 \\
0
\end{array}\right]=-5 Y_{3} \\
B Y_{3}=\left[\begin{array}{ccc}
-3 & 6 & 1 \\
1 & -2 & 2 \\
0 & 0 & -2
\end{array}\right]\left[\begin{array}{c}
1 \\
-0.3333 \\
0
\end{array}\right]=\left[\begin{array}{c}
-5 \\
1.6666 \\
0
\end{array}\right]=-5\left[\begin{array}{c}
1 \\
-0.3333 \\
0
\end{array}\right]=-5 Y_{4}
\end{gathered}
$$

\therefore The dominant Eigen value for $B=-5$.
Sum of Eigen values $=$ Trace of the matrix A
$\lambda_{1}+\lambda_{2}+\lambda_{3}=1+2+3$
$\lambda_{1}+4-5=6 \Rightarrow \lambda_{1}=7$
\therefore The three Eigen values are $-5,4 \& 7$.
The Eigen vector is $\left[\begin{array}{c}1 \\ 0.5 \\ 0\end{array}\right]$.
2. Using power method find the all Eigen value and the corresponding Eigen vector of the matrix
$A=\left[\begin{array}{ccc}5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5\end{array}\right]$.
Solution : Let $X_{0}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ be the initial vector.
Therefore,

$$
\begin{gathered}
A X_{1}=\left[\begin{array}{ccc}
5 & 0 & 1 \\
0 & -2 & 0 \\
1 & 0 & 5
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
5 \\
0 \\
1
\end{array}\right]=5\left[\begin{array}{c}
1 \\
0 \\
0.2
\end{array}\right]=1 X_{2} \\
A X_{2}=\left[\begin{array}{lll}
5 & 0 & 1 \\
0 & -2 & 0 \\
1 & 0 & 5
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0.2
\end{array}\right]=\left[\begin{array}{c}
5.2 \\
0 \\
2
\end{array}\right]=5.2\left[\begin{array}{c}
1 \\
0 \\
0.3846
\end{array}\right]=5.2 X_{3} \\
A X_{3}=\left[\begin{array}{ccc}
5 & 0 & 1 \\
0 & -2 & 0 \\
1 & 0 & 5
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
0.3846
\end{array}\right]=\left[\begin{array}{l}
5.3846 \\
0 \\
2.9231
\end{array}\right]=5.3846\left[\begin{array}{c}
1 \\
0 \\
0.5429
\end{array}\right]=5.3846 X_{4} \\
A X_{4}=\left[\begin{array}{lll}
5 & 0 & 1 \\
0 & -2 & 0 \\
1 & 0 & 5
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
0.5429
\end{array}\right]=\left[\begin{array}{c}
5.5429 \\
0 \\
3.7143
\end{array}\right]=5.5429\left[\begin{array}{c}
1 \\
0 \\
0.6701
\end{array}\right]=5.5429 X_{5} \\
A X_{5}=\left[\begin{array}{lcl}
5 & 0 & 1 \\
0 & -2 & 0 \\
1 & 0 & 5
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
0.6701
\end{array}\right]=\left[\begin{array}{c}
5.6701 \\
0 \\
4.3505
\end{array}\right]=5.6701\left[\begin{array}{c}
1 \\
0 \\
0.7672
\end{array}\right]=5.6701 X_{6} \\
A X_{6}=\left[\begin{array}{lcc}
5 & 0 & 1 \\
0 & -2 & 0 \\
1 & 0 & 5
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
0.7672
\end{array}\right]=\left[\begin{array}{c}
5.7672 \\
0 \\
4.8360
\end{array}\right]=5.7672\left[\begin{array}{c}
1 \\
0 \\
0.8385
\end{array}\right]=5.7672 X_{7} \\
A X_{7}=\left[\begin{array}{lll}
5 & 0 & 1 \\
0 & -2 & 0 \\
1 & 0 & 5
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
0.8385
\end{array}\right]=\left[\begin{array}{c}
5.8385 \\
0 \\
5.1927
\end{array}\right]=5.8385\left[\begin{array}{c}
1 \\
0 \\
0.8894
\end{array}\right]=5.8385 X_{8} \\
A X_{8}=\left[\begin{array}{lll}
5 & 0 & 1 \\
0 & -2 & 0 \\
1 & 0 & 5
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
0.8894
\end{array}\right]=\left[\begin{array}{c}
5.8894 \\
0 \\
5.4470
\end{array}\right]=5.8894\left[\begin{array}{c}
1 \\
0 \\
0.9249
\end{array}\right]=5.8894 X_{9} \\
A X_{9}=\left[\begin{array}{lll}
1 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
1
\end{array}\right]\left[\begin{array}{c}
5.9249 \\
0 \\
0 \\
5.6244
\end{array}\right]=5.9249\left[\begin{array}{c}
1 \\
0 \\
0.9493
\end{array}\right]=5.9249 X_{10}
\end{gathered}
$$

$$
\begin{aligned}
& A X_{10}=\left[\begin{array}{lcl}
5 & 0 & 1 \\
0 & -2 & 0 \\
1 & 0 & 5
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
0.9493
\end{array}\right]=\left[\begin{array}{c}
5.9493 \\
0 \\
5.7465
\end{array}\right]=5.9493\left[\begin{array}{c}
1 \\
0 \\
0.9659
\end{array}\right]=5.9493 X_{11} \\
& A X_{11}=\left[\begin{array}{lcl}
5 & 0 & 1 \\
0 & -2 & 0 \\
1 & 0 & 5
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
0.9659
\end{array}\right]=\left[\begin{array}{c}
5.9659 \\
0 \\
5.8296
\end{array}\right]=5.9659\left[\begin{array}{c}
1 \\
0 \\
0.9771
\end{array}\right]=5.9659 X_{12} \\
& A X_{12}=\left[\begin{array}{lll}
5 & 0 & 1 \\
0 & -2 & 0 \\
1 & 0 & 5
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
0.9771
\end{array}\right]=\left[\begin{array}{c}
5.9771 \\
0 \\
5.8857
\end{array}\right]=5.9771\left[\begin{array}{c}
1 \\
0 \\
0.9847
\end{array}\right]=5.9771 X_{13} \\
& A X_{13}=\left[\begin{array}{lll}
5 & 0 & 1 \\
0 & -2 & 0 \\
1 & 0 & 5
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
0.9847
\end{array}\right]=\left[\begin{array}{c}
5.9847 \\
0 \\
5.9236
\end{array}\right]=5.9847\left[\begin{array}{c}
1 \\
0 \\
0.9898
\end{array}\right]=5.9847 X_{14} \\
& A X_{14}=\left[\begin{array}{lll}
5 & 0 & 1 \\
0 & -2 & 0 \\
1 & 0 & 5
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
0.9898
\end{array}\right]=\left[\begin{array}{c}
5.9898 \\
0 \\
5.9489
\end{array}\right]=5.9898\left[\begin{array}{c}
1 \\
0 \\
0.9932
\end{array}\right]=5.9898 X_{15} \\
& A X_{15}=\left[\begin{array}{lll}
5 & 0 & 1 \\
0 & -2 & 0 \\
1 & 0 & 5
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
0.9932
\end{array}\right]=\left[\begin{array}{c}
5.9932 \\
0 \\
5.9659
\end{array}\right]=5.9932\left[\begin{array}{c}
1 \\
0 \\
0.9954
\end{array}\right]=5.9932 X_{16} \\
& \left.A X_{16}=\left[\begin{array}{lll}
5 & 0 & 1 \\
0 & -2 & 0 \\
1 & 0 & 5
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
0.9954
\end{array}\right]=\left[\begin{array}{c}
5.9954 \\
0 \\
5.9772
\end{array}\right]=5.9954 \begin{array}{c}
1 \\
0 \\
0.9970
\end{array}\right]=5.9954 X_{17} \\
& A X_{17}=\left[\begin{array}{ll}
5 & 0 \\
0 & 1 \\
1 & 0 \\
0 & 5
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
0.9970
\end{array}\right]=\left[\begin{array}{l}
5.9970 \\
0
\end{array}\right]=5.9974\left[\begin{array}{l}
1 \\
0 \\
0.9848
\end{array}\right]
\end{aligned}
$$

\therefore The dominant Eigen value $=6$ (app).
Corresponding Eigen vector is $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ (app).

To find the Second Eigen value:

$$
\text { Let } \begin{aligned}
B=A-\lambda I & \Rightarrow B=A-4 I . \\
& B=\left[\begin{array}{ccc}
5 & 0 & 1 \\
0 & -2 & 0 \\
1 & 0 & 5
\end{array}\right]-6\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -8 & 0 \\
1 & 0 & -1
\end{array}\right]
\end{aligned}
$$

We need to find the dominant Eigen value for the matrix B.
Let $Y_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ be the initial vector.

$$
B Y_{1}=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -8 & 0 \\
1 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]=-1\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]=-1 Y_{2}
$$

$$
\begin{gathered}
B Y_{2}=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -8 & 0 \\
1 & 0 & -1
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-2 \\
0 \\
2
\end{array}\right]=-2\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]=-2 Y_{3} \\
B Y_{3}=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -8 & 0 \\
1 & 0 & -1
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-2 \\
0 \\
2
\end{array}\right]=-2\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]
\end{gathered}
$$

\therefore The dominant Eigen value for $B=-2$.
Sum of Eigen values $=$ Trace of the matrix A
$\lambda_{1}+\lambda_{2}+\lambda_{3}=5-2+5$
$\lambda_{1}+6-2=8 \Rightarrow \lambda_{1}=4$
\therefore The three Eigen values are $-2,4 \& 6$.
The Eigen vector is $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$.
3. Find the largest Eigen value and the corresponding Eigen vector of the matrix $\left[\begin{array}{ccc}25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4\end{array}\right]$. Solution : Let $X_{0}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ be the initial vector.

Therefore,

$$
\begin{gathered}
A X_{1}=\left[\begin{array}{ccc}
25 & 1 & 2 \\
1 & 3 & 0 \\
2 & 0 & -4
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
25 \\
1 \\
2
\end{array}\right]=25\left[\begin{array}{c}
1 \\
0.04 \\
0.08
\end{array}\right]=25 X_{2} \\
A X_{2}=\left[\begin{array}{lll}
25 & 1 & 2 \\
1 & 3 & 0 \\
2 & 0 & -4
\end{array}\right]\left[\begin{array}{c}
1 \\
0.04 \\
0.08
\end{array}\right]=\left[\begin{array}{c}
25.2 \\
1.12 \\
1.68
\end{array}\right]=25.2\left[\begin{array}{l}
1.00 \\
0.04 \\
0.07
\end{array}\right]=25.2 X_{3} \\
A X_{3}=\left[\begin{array}{ccc}
25 & 1 & 2 \\
1 & 3 & 0 \\
2 & 0 & -4
\end{array}\right]\left[\begin{array}{c}
1.00 \\
0.04 \\
0.07
\end{array}\right]=\left[\begin{array}{c}
25.18 \\
1.12 \\
1.72
\end{array}\right]=25.18\left[\begin{array}{c}
1.00 \\
0.04 \\
0.07
\end{array}\right]=25.18 X_{4} \\
A X_{4}=\left[\begin{array}{ccc}
25 & 1 & 2 \\
1 & 3 & 0 \\
2 & 0 & -4
\end{array}\right]\left[\begin{array}{c}
1.00 \\
0.04 \\
0.07
\end{array}\right]=\left[\begin{array}{c}
25.18 \\
1.12 \\
1.72
\end{array}\right]=25.18\left[\begin{array}{c}
1.00 \\
0.04 \\
0.07
\end{array}\right]
\end{gathered}
$$

\therefore The dominant Eigen value $=25.18$ (app).
Corresponding Eigen vector is $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ (app).
4. Using power method find the dominant Eigen value and the corresponding Eigen vector of the matrix
$A=\left[\begin{array}{ll}4 & 1 \\ 1 & 3\end{array}\right]$.

Solution : Let $X_{0}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ be the initial vector.
Therefore,

$$
\begin{gathered}
A X_{1}=\left[\begin{array}{ll}
4 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
4 \\
1
\end{array}\right]=4\left[\begin{array}{c}
1 \\
0.25
\end{array}\right]=4 X_{2} \\
A X_{2}=\left[\begin{array}{ll}
4 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
0.25
\end{array}\right]=\left[\begin{array}{l}
4.25 \\
1.75
\end{array}\right]=4.25\left[\begin{array}{c}
1 \\
0.4118
\end{array}\right]=4.25 X_{3} \\
A X_{3}=\left[\begin{array}{ll}
4 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{c}
1 \\
0.4118
\end{array}\right]=\left[\begin{array}{l}
4.4118 \\
2.2352
\end{array}\right]=4.4118\left[\begin{array}{c}
1 \\
0.5066
\end{array}\right]=4.4118 X_{4} \\
A X_{4}=\left[\begin{array}{ll}
4 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{c}
1 \\
0.5066
\end{array}\right]=\left[\begin{array}{l}
4.5066 \\
2.5199
\end{array}\right]=4.5066\left[\begin{array}{c}
1 \\
0.5591
\end{array}\right]=4.5066 X_{5} \\
A X_{5}=\left[\begin{array}{ll}
4 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{c}
1 \\
0.5591
\end{array}\right]=\left[\begin{array}{l}
4.5591 \\
2.677
\end{array}\right]=4.5591\left[\begin{array}{c}
1 \\
0.5871
\end{array}\right]=4.5591 X_{6} \\
A X_{6}=\left[\begin{array}{ll}
4 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{c}
1 \\
0.5871
\end{array}\right]=\left[\begin{array}{l}
4.5871 \\
2.7613
\end{array}\right]=4.5871\left[\begin{array}{c}
1 \\
0.6019
\end{array}\right]=44.5871 X_{7} \\
A X_{7}=\left[\begin{array}{ll}
4 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{c}
1 \\
0.6019
\end{array}\right]=\left[\begin{array}{l}
4.6019 \\
2.8057
\end{array}\right]=4.6019\left[\begin{array}{c}
1 \\
0.6096
\end{array}\right]=4.6019 X_{8} \\
A X_{8}
\end{gathered}=\left[\begin{array}{ll}
4 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{c}
1 \\
0.6096
\end{array}\right]=\left[\begin{array}{l}
4.6096 \\
2.8288
\end{array}\right]=4.6096\left[\begin{array}{c}
1 \\
0.6137
\end{array}\right]=4.6096 X_{9} .
$$

\therefore The dominant Eigen value $=4.60$
Corresponding Eigen vector is $\left[\begin{array}{c}1 \\ 0.6137\end{array}\right]$.
5. Find numerically largest e Eigen value and the corresponding Eigen vector of the matrix by power method $\left[\begin{array}{ccc}1 & \pi^{3} & 2 \\ 4 & 4 & -1 \\ 6 & 3 & 5\end{array}\right]$.
Solution: Let $X_{0}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ be the initial vector.
Therefore,

$$
\begin{gathered}
A X_{1}=\left[\begin{array}{ccc}
1 & -3 & 2 \\
4 & 4 & -1 \\
6 & 3 & 5
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
4 \\
6
\end{array}\right]=6\left[\begin{array}{c}
0.167 \\
0.667 \\
1
\end{array}\right]=6 X_{2} \\
A X_{2}=\left[\begin{array}{ccc}
1 & -3 & 2 \\
4 & 4 & -1 \\
6 & 3 & 5
\end{array}\right]\left[\begin{array}{c}
0.167 \\
0.667 \\
1
\end{array}\right]=\left[\begin{array}{l}
0.166 \\
2.336 \\
8.003
\end{array}\right]=8.003\left[\begin{array}{c}
0.021 \\
0.292 \\
1
\end{array}\right]=8.003 X_{3} \\
A X_{3}=\left[\begin{array}{c}
1.145 \\
0.252 \\
6.002
\end{array}\right]=6.002\left[\begin{array}{c}
0.191 \\
0.042 \\
1
\end{array}\right]=6.002 X_{4} \\
A X_{4}=\left[\begin{array}{c}
2.065 \\
-0.068 \\
6.272
\end{array}\right]=6.272\left[\begin{array}{c}
0.329 \\
-0.011 \\
1
\end{array}\right]=6.272 X_{5}
\end{gathered}
$$

$$
\begin{aligned}
& A X_{5}=\left[\begin{array}{l}
2.362 \\
0.272 \\
6.941
\end{array}\right]=6.941\left[\begin{array}{c}
0.34 \\
0.039 \\
1
\end{array}\right]=6.941 X_{6} \\
& A X_{6}=\left[\begin{array}{l}
2.223 \\
0.516 \\
7.157
\end{array}\right]=7.157\left[\begin{array}{c}
1 \\
0.4997 \\
0
\end{array}\right]=7.157 X_{7} \\
& A X_{7}=\left[\begin{array}{l}
2.065 \\
0.532 \\
7.082
\end{array}\right]=7.082\left[\begin{array}{c}
0.296 \\
0.075 \\
1
\end{array}\right]=7.082 X_{8} \\
& A X_{8}=\left[\begin{array}{l}
2.071 \\
0.484 \\
7.001
\end{array}\right]=7.001\left[\begin{array}{c}
0.296 \\
0.069 \\
1
\end{array}\right]=7.001 X_{9} \\
& A X_{9}=\left[\begin{array}{l}
2.089 \\
0.46 \\
6.983
\end{array}\right]=6.983\left[\begin{array}{c}
0.296 \\
0.066 \\
1
\end{array}\right]=6.983 X_{10} \\
& A X_{10}=\left[\begin{array}{l}
2.101 \\
0.46 \\
6.992
\end{array}\right]=6.992\left[\begin{array}{c}
0.3 \\
0.066 \\
1
\end{array}\right]=6.992 X_{11} \\
& A X_{11}=\left[\begin{array}{l}
2.102 \\
0.464 \\
6.998
\end{array}\right]=6.998\left[\begin{array}{c}
0.3 \\
0.066 \\
1
\end{array}\right]=6.998 X_{12} \\
& A X_{12}=\left[\begin{array}{l}
2.102 \\
0.464 \\
6.998
\end{array}\right]=6.998\left[\begin{array}{c}
0.3 \\
0.066 \\
1
\end{array}\right]=6.998 X_{13}
\end{aligned}
$$

\therefore The Eigen value $=6.998$.

INVERSE OF A MATRIX BY GAUSS JORDAN METHOD

Example : 1

Find the inverse of the matrix $A=\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{array}\right]$

Solution:

We know that $[A, I]=\left[I, A^{-1}\right]$
Now, $[A, I]=\left[\begin{array}{lllllll}1 & 3 & 3 & \vdots & 1 & 0 & 0 \\ 1 & 4 & 3 & \vdots & 0 & 1 & 0 \\ 1 & 3 & 4 & \vdots & 0 & 0 & 1\end{array}\right]$
Now, we need to make $[A . I]$ as a diagonal matrix.
Fix the first row, change second and third row by using first row.

$$
[A, I] \sim\left[\begin{array}{ccccccc}
1 & 3 & 3 & \vdots & 1 & 0 & 0 \\
0 & 1 & 0 & \vdots & -1 & 1 & 0 \\
0 & 0 & 1 & \vdots & -1 & 0 & 1
\end{array}\right] \quad \begin{gathered}
R_{2} \Leftrightarrow R_{2}-R_{1} \\
R_{3} \Leftrightarrow R_{3}-R_{1}
\end{gathered}
$$

Fix the third row, change first and second row by using third row.

$$
[A, I] \sim\left[\begin{array}{ccccccc}
1 & 3 & 0 & \vdots & 4 & 0 & -3 \\
0 & 1 & 0 & \vdots & -1 & 1 & 0 \\
0 & 0 & 1 & \vdots & -1 & 0 & 1
\end{array}\right] \quad R_{1} \Leftrightarrow R_{1}-3 R_{3}
$$

Fix the second \& third row, change first by using second row.

$$
\begin{aligned}
{[A, I] } & \sim\left[\begin{array}{ccccccc}
1 & 0 & 0 & \vdots & 7 & -3 & -3 \\
0 & 1 & 0 & \vdots & -1 & 1 & 0 \\
0 & 0 & 1 & \vdots & -1 & 0 & 1
\end{array}\right]=\left[I, A^{-1}\right] \quad R_{1} \Leftrightarrow R_{1}-3 R_{2} \\
A^{-1} & =\left[\begin{array}{ccc}
7 & -3 & -3 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Verification :

W.k.t $A A^{-1}=I \Rightarrow\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{array}\right] *\left[\begin{array}{ccc}7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Example: 1
Find the inverse of the matrix $A=\left[\begin{array}{ccc}2 & 1 & 1 \\ 1 & -1 & 1 \\ 4 & 2 & -3\end{array}\right]$

Solution:

We know that $[A, I]=\left[I, A^{-1}\right]$
Now, $[A, I]=\left[\begin{array}{ccc:ccc}2 & 1 & 1 \\ 1 & -1 & 1 & \vdots & 1 & 0 \\ 0 & 1 & 0 \\ 4 & 2 & -3 & \vdots & 0 & 1\end{array}\right]$
Now, we need to make [A.I] as a diagonal matrix.
Fix the first row, change second and third row by using first row.

$$
[A, I] \sim\left[\begin{array}{ccccccc}
2 & 1 & 1 & \vdots & 1 & 0 & 0 \\
0 & -3 & 1 & \vdots & -1 & 2 & 0 \\
0 & 0 & -10 & \vdots & -4 & 0 & 2
\end{array}\right] \quad \begin{array}{r}
R_{2} \Leftrightarrow 2 R_{2}-R_{1} \\
R_{3} \Leftrightarrow 2 R_{3}-4 R_{1}
\end{array}
$$

Fix the third row, change first and second row by using third row.

$$
[A, I] \sim\left[\begin{array}{ccccccc}
-20 & -10 & 0 & \vdots & -6 & 0 & -2 \\
0 & 30 & 0 & \vdots & 14 & -20 & -2 \\
0 & 0 & -10 & \vdots & -4 & 0 & 2
\end{array}\right] \quad \begin{aligned}
& R_{1} \Leftrightarrow-10 R_{1}-R_{3} \\
& R_{2} \Leftrightarrow-10 R_{2}-R_{3}
\end{aligned}
$$

Fix the second \& third row, change first by using second row.

$$
[A, I] \sim\left[\begin{array}{ccccccc}
-600 & 0 & 0 & \vdots & -40 & -200 & -80 \\
0 & 30 & 0 & \vdots & 14 & -20 & -2 \\
0 & 0 & -10 & \vdots & -4 & 0 & 2
\end{array}\right] \quad R_{1} \Leftrightarrow 30 R_{1}-(-10) R_{2}
$$

$$
\begin{aligned}
& {[A, I] \sim } {\left[\begin{array}{ccccccc}
1 & 0 & 0 & \vdots & \frac{-40}{-600} & \frac{-200}{-600} & \frac{-80}{-600} \\
0 & 1 & 0 & \vdots & \frac{14}{30} & \frac{-20}{30} & \frac{-2}{30} \\
0 & 0 & 1 & \vdots & \frac{-4}{-10} & 0 & \frac{2}{-10}
\end{array}\right] \begin{array}{c}
\\
R_{1} \Leftrightarrow R_{1} /-600 \\
R_{2} \Leftrightarrow R_{2} / 30 \\
R_{3} \Leftrightarrow R_{3} /-10
\end{array} } \\
& A^{-1}=\left[\begin{array}{cccc}
1 / 15 & 1 / 3 & 2 / 15 \\
7 / 15 & -2 / 3 & -1 / 15 \\
2 / 5 & 0 & -1 / 5
\end{array}\right]
\end{aligned}
$$

Verification :

W.k.t $A A^{-1}=I \quad \Rightarrow\left[\begin{array}{ccc}2 & 1 & 1 \\ 1 & -1 & 1 \\ 4 & 2 & -3\end{array}\right] *\left[\begin{array}{ccc}1 / 15 & 1 / 3 & 2 / 15 \\ 7 / 15 & -2 / 3 & -1 / 15 \\ 2 / 5 & 0 & -1 / 5\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Example: 3
Find the inverse of the matrix $A=\left[\begin{array}{ccc}4 & 1 & 2 \\ 2 & 3 & -1 \\ 1 & -2 & 2\end{array}\right]$

Solution:

We know that $[A, I]=\left[I, A^{-1}\right]$
Now, $[A, I]=\left[\begin{array}{ccccccc}4 & 1 & 2 & \vdots & 1 & 0 & 0 \\ 2 & 3 & -1 & \vdots & 0 & 1 & 0 \\ 1 & -2 & 2 & \vdots & 0 & 0 & 1\end{array}\right]$
Now, we need to make $[A . I]$ as a diagonal matrix.
Fix the first row, change second and third roy by using first row.

$$
[A, I] \sim\left[\begin{array}{ccccccc}
4 & 1 & 2 & \vdots & 1 & 0 & 0 \\
0 & 10 & -8 & \vdots & -2 & 4 & 0 \\
0 & -9 & 6 & \vdots & -1 & 0 & 4
\end{array}\right] \quad \begin{aligned}
& R_{2} \Leftrightarrow 4 R_{2}-2 R_{1} \\
& R_{3} \Leftrightarrow 4 R_{3}-1 R_{1}
\end{aligned}
$$

Fix the first row \& second row, change third row by using second row.

$$
[A, I] \sim\left[\begin{array}{ccccccc}
4 & 1 & 2 & \vdots & 1 & 0 & 0 \\
0 & 10 & -8 & \vdots & -2 & 4 & 0 \\
0 & 0 & -12 & \vdots & -28 & 36 & 40
\end{array}\right] \quad R_{3} \Leftrightarrow 10 R_{3}-(-9) R_{2}
$$

Fix the third row, change first and second row by using third row.

$$
[A, I] \sim\left[\begin{array}{ccccccc}
-48 & -12 & 0 & \vdots & 44 & -72 & -80 \\
0 & -120 & 0 & \vdots & -200 & 240 & 320 \\
0 & 0 & -12 & \vdots & -28 & 36 & 40
\end{array}\right] \quad \begin{gathered}
R_{1} \Leftrightarrow-12 R_{1}-2 R_{3} \\
R_{2} \Leftrightarrow-12 R_{2}-(-8) R_{3}
\end{gathered}
$$

Fix the second \& third row, change first by using second row.

$$
[A, I] \sim\left[\begin{array}{ccccccc}
5760 & 0 & 0 & \vdots & -7680 & 11520 & 13440 \\
0 & -120 & 0 & \vdots & -200 & 240 & 320 \\
0 & 0 & -12 & \vdots & -28 & 36 & 40
\end{array}\right] \quad R_{1} \Leftrightarrow-120 R_{1}-(-12) R_{2}
$$

$$
\begin{aligned}
{[A, I] \sim } & {\left[\begin{array}{ccccccc}
1 & 0 & 0 & \vdots & \frac{-7680}{5760} & \frac{11520}{5760} & \frac{13440}{5760} \\
0 & 1 & 0 & \vdots & \frac{-200}{-120} & \frac{240}{-120} & \frac{320}{-120} \\
0 & 0 & 1 & \vdots & \frac{-28}{-12} & \frac{36}{-12} & \frac{40}{-12}
\end{array}\right] \begin{array}{c}
R_{1} \Leftrightarrow R_{1} / 960 \\
R_{2} \Leftrightarrow R_{2} /-120 \\
R_{3} \Leftrightarrow R_{3} /-12
\end{array} } \\
A^{-1} & =\left[\begin{array}{cccc}
-4 / 3 & 2 & 7 / 3 \\
5 / 3 & -2 & -8 / 3 \\
7 / 3 & -3 & -10 / 3
\end{array}\right]
\end{aligned}
$$

Verification :

W.k.t $A A^{-1}=I \quad \Rightarrow\left[\begin{array}{ccc}4 & 1 & 2 \\ 2 & 3 & -1 \\ 1 & -2 & 2\end{array}\right] *\left[\begin{array}{ccc}-4 / 3 & 2 & 7 / 3 \\ 5 / 3 & -2 & -8 / 3 \\ 7 / 3 & -3 & -10 / 3\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Example: 4
Find the inverse of the matrix $A=\left[\begin{array}{ccc}2 & 0 & 1 \\ 3 & 2 & 5 \\ 1 & -1 & 0\end{array}\right]$
Solution:
When we finding the inverse of a matrix A, the diagonal elements should not be zero. If its zero, then rearrange the given matrix A . That is

$$
A=\left[\begin{array}{ccc}
2 & 0 & 1 \\
1 & -1 & 0 \\
3 & 2 & 5
\end{array}\right] \quad \text { (Correct form) }
$$

We know that $[A, I]=[I, A-1]$

$$
\text { Now, }[A, I]=\left[\begin{array}{ccccccc}
2 & 0 & 1 & \vdots & 1 & 0 & 0 \\
1 & -1 & 0 & \vdots & 0 & 1 & 0 \\
3 & 2 & 5 & \vdots & 0 & 0 & 1
\end{array}\right]
$$

Now, we need to make [A.I] as a diagonal matrix.
Fix the first row, change second and third row by using first row.

$$
[A, I] \sim\left[\begin{array}{ccccccc}
2 & 0 & 1 & \vdots & 1 & 0 & 0 \\
0 & -2 & -1 & \vdots & -1 & 2 & 0 \\
0 & 4 & 7 & \vdots & -3 & 0 & 2
\end{array}\right] \quad \begin{aligned}
& R_{2} \Leftrightarrow 2 R_{2}-1 R_{1} \\
& R_{3} \Leftrightarrow 2 R_{3}-3 R_{1}
\end{aligned}
$$

Fix the first row \& second row, change third row by using second row.

$$
[A, I] \sim\left[\begin{array}{ccccccc}
2 & 0 & 1 & \vdots & 1 & 0 & 0 \\
0 & -2 & -1 & \vdots & -1 & 2 & 0 \\
0 & 0 & -10 & \vdots & 10 & -8 & -4
\end{array}\right] \quad R_{3} \Leftrightarrow-2 R_{3}-4 R_{2}
$$

Fix the third row, change first and second row by using third row.

$$
[A, I] \sim\left[\begin{array}{ccccccc}
-20 & 0 & 0 & \vdots & -20 & 8 & 4 \\
0 & 20 & 0 & \vdots & 20 & -28 & -4 \\
0 & 0 & -10 & \vdots & 10 & -8 & -4
\end{array}\right] \quad \begin{gathered}
R_{1} \Leftrightarrow-10 R_{1}-1 R_{3} \\
R_{2} \Leftrightarrow-10 R_{2}-(-1) R_{3}
\end{gathered}
$$

$$
\begin{aligned}
& {[A, I] \sim } {\left[\begin{array}{llllccc}
1 & 0 & 0 & \vdots & -20 /-20 & 8 /-20 & 4 /-20 \\
0 & 1 & 0 & \vdots & 20 / 20 & -28 / 20 & -4 / 20 \\
0 & 0 & 1 & \vdots & 10 /-10 & -8 /-10 & -4 /-10
\end{array}\right] \begin{array}{c}
R_{1} \Leftrightarrow R_{1} /-20 \\
R_{2} \Leftrightarrow R_{2} / 20 \\
R_{3} \Leftrightarrow R_{3} /-10
\end{array} } \\
& A^{-1}=\left[\begin{array}{ccc}
1 & -2 / 5 & -1 / 5 \\
1 & 7 / 5 & -1 / 5 \\
-1 & 4 / 5 & 2 / 5
\end{array}\right]
\end{aligned}
$$

Verification :

W.k.t $A A^{-1}=I \Rightarrow\left[\begin{array}{ccc}2 & 0 & 1 \\ 1 & -1 & 0 \\ 3 & 2 & 5\end{array}\right] *\left[\begin{array}{ccc}1 & -2 / 5 & -1 / 5 \\ 1 & 7 / 5 & -1 / 5 \\ -1 & 4 / 5 & 2 / 5\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

METHOD OF FALSE POSITION OR REGULA FALSI METHOD

Example-1: Solve for a positive root of $\boldsymbol{x}^{\mathbf{3}}-\mathbf{2 x} \mathbf{- 5}=\mathbf{0}$ by regula falsi method.
Solution:
Given $f(x)=x^{3}-2 x-5$.
Now, $f(0)=(0)^{3}-2(0)-5=-5 \quad(-v e)$
$f(1)=(1)^{3}-2(1)-5=-6 \quad(-v e)$
$f(2)=(2)^{3}-2(2)-5=-1 \quad(-v e)$
$f(3)=(3)^{3}-2(3)-5=10$
\therefore The approximate root lies $b / w 2(-v \boldsymbol{e}) \& 3(+v e)$.
$\therefore \quad(a, b)=(1,2)$
Now $\quad x_{1}=\frac{a f(b)-b f(a)}{f(b)-f(a)}$
$x_{1}=\frac{2 f(3)-3 f(2)}{f(3)-f(2)}=\frac{2[16]-3[-1]}{[16]-[-1]}=2.058824$
$x_{1}=2.058824$.
Now $f\left(x_{1}\right)=f(2.058824)=(2.058824)^{3}-2(2.058824)-5=-0.390 \quad(-v e)$
\therefore we replace the $(-v e)$ value by 2.058824
$\therefore \quad(a, b)=(2.058824,2)$
$x_{2}=\frac{2.058824 f(2)-3 f(2.058824)}{f(2)-f(2.058824)}=2.081264$

Now $f\left(x_{2}\right)=f(2.081264)=(2.081264)^{3}-2(2.081264)-5=-0.14 \quad(-v e)$
\therefore we replace the ($-v e$) value by 2.081264
$\therefore \quad(a, b)=(2.081264,2)$
$x_{3}=\frac{2.081264 f(2)-3 f(2.081264)}{f(2)-f(2.081264)}=2.089639$
Now $f\left(x_{3}\right)=f(2.089639)=-0.054(-v e)$
\therefore we replace the ($-v e$) value by 2.089639
$\therefore \quad(a, b)=(2.089639,2)$
$x_{4}=\frac{2.089639 f(2)-3 f(2.089639)}{f(2)-f(2.089639)}=2.092740$
Now $f\left(x_{4}\right)=f(2.09274)=-0.020(-v e)$
\therefore we replace the $(-v e)$ value by 2.09274
$\therefore \quad(a, b)=(2.09274,2)$
$x_{5}=\frac{2.09274 f(2)-3 f(2.09274)}{f(2)-f(2.09274)}=2.093884$
Now $f\left(x_{5}\right)=f(2.093884)=-0,007(-v e)$
\therefore we replace the ($-v e$) value by 2.093884
$\therefore \quad(a, b)=(2.093884,2)$
$x_{6}=\frac{2.093884 f(2)-3 f(2.093884)}{f(2)-f(2.093884)}=2.094306$
Now $f\left(x_{6}\right)=f(2.094306)=-0.007(-v e)$
\therefore we replace the ($-v e$) value by 2.094306
$\therefore \quad(a, b)=(2.094306,2)$
$x_{7}=\frac{2.094306 f(2)-3 f(2.094306)}{f(2)-f(2.094306)}=2.094461$
\therefore The Root of the given equation is 2.094 (Correct to three decimal places).
Example - 2: Solve for a positive root of $\boldsymbol{x} \boldsymbol{e}^{x}=2$ by the method of false position.

Solution:

Given $f(x)=x e^{x}-2$.

Now, $f(0)=(0) e^{0}-2=-2 \quad(-v e)$
$f(1)=(1) e^{1}-2=0.718 \quad(+v e)$
\therefore The approximate root lies $b / w \mathbf{0}(-\boldsymbol{v e}) \& \mathbf{1}(+\boldsymbol{v e})$.
$\therefore \quad(\boldsymbol{a}, \boldsymbol{b})=(\mathbf{0}, \mathbf{1})$
Now $\quad x_{1}=\frac{a f(b)-b f(a)}{f(b)-f(a)}$
$x_{1}=\frac{0 f(1)-1 f(0)}{f(1)-f(0)}=\frac{0[0.71828]-3[-2]}{[0.71828]-[-2]}=0.735759$
$x_{1}=0.735759$.
Now $f\left(x_{1}\right)=f(0.735759)=0.735759 e^{0.735759}-2=-0.46 \quad(-v e)$
\therefore we replace the (-ve) value by 0.735759
$\therefore \quad(a, b)=(0.735759,1)$
$x_{2}=\frac{0.735759 f(1)-1 f(0.735759)}{f(1)-f(0.735759)}=0.839521$
Now $f\left(x_{2}\right)=f(0.839521)=-0.05 \quad(-v e)$
\therefore we replace the (-ve) value by 0.839521
$\therefore \quad(a, b)=(0.839521,1)$
$x_{3}=\frac{0.839521 f(1)-1 f(0.839521)}{f(1)-f(0.839521)}=0.851184$
Now $f\left(x_{3}\right)=f(0.851184)=-0.0061 \quad(-v e)$
\therefore we replace the ($-v e$) value by 0.851184
$\therefore \quad(a, b)=(0.851184,1)$
$x_{4}=\frac{0.851184 f(1)-1 f(0.851184)}{f(1)-f(0.851184)}=0.852452$
Now $f\left(x_{4}\right)=f(0.852452)=-0 . .020 \quad(-v e)$
\therefore we replace the (- ve) value by 0.852452
$\therefore \quad(a, b)=(0.852452,2)$
$x_{5}=\frac{0.852452 f(1)-1 f(0.852452)}{f(1)-f(0.852452)}=0.85261$

Now $f\left(x_{5}\right)=f(0.85261)=-0.000019(-v e)$
\therefore we replace the (- ve $)$ value by 0.85261
$\therefore \quad(a, b)=(0.85261,2)$
$x_{6}=\frac{0.85261 f(1)-1 f(0.85261)}{f 1-f(0.85261)}=0.85261$
\therefore The Root of the given equation is $\mathbf{0 . 8 5 2 6 1}$ (Correct to four decimal places).
Example- 3: Solve for a positive root of $\boldsymbol{x} \log _{10} \boldsymbol{x}-\mathbf{1 . 2}=\mathbf{0}$ by regula falsi method.

Solution:

Given $f(x)=x \log _{10} x-1.2$.
Now, $f(0)=(0) \log _{10}(0)-1.2=-1.2 \quad(-v e)$
$f(1)=(1) \log _{10}(1)-1.2=-1.2 \quad(-v e)$
$f(2)=(2) \log _{10}(2)-1.2=-0.59 \quad(-v e)$
$f(3)=(3) \log _{10}(3)-1.2=0.23 \quad(+v e)$

\therefore The approximate root lies $b / w 2(-\boldsymbol{v e}) \& 3(+\boldsymbol{v e})$.
$\therefore \quad(a, b)=(1,2)$
Now $\quad x_{1}=\frac{a f(b)-b f(a)}{f(b)-f(a)}$
$x_{1}=\frac{2 f(3)-3 f(2)}{f(3)-f(2)}=\frac{2[0.23136]-3[-0.59794]}{[0.23136]-0.59794}=2.721014$
$x_{1}=2.721014$.
Now $f\left(x_{1}\right)=f(2.721014)=(2.721014) \log _{10}(2.721014)-1.2=-0.01 \quad(-v e)$
\therefore we replace the (-ve) value by 2.721014
$\therefore \quad(a, b)=(2.721014,2)$
$x_{2}=\frac{2.721014 f(2)-3 f(2.721014)}{f(2)-f(2.721014)}=2.740211$
Now $f\left(x_{2}\right)=f(2.7402)=(2.7402) \log _{10}(2.7402)-1.2=-0.00038(-v e)$
\therefore we replace the ($-v e$) value by 2.7402
$\therefore \quad(a, b)=(2.7402,2)$

$$
\begin{aligned}
& x_{3}=\frac{2.7402 f(2)-3 f(2.7402)}{f(2)-f(2.7402)}=2.740627 \\
& \text { Now } f\left(x_{3}\right)=f(2.7406)=0.00011 \quad(+v e) \\
& \therefore \text { we replace the }(+ \text { ve) value by } 2.7406 \\
& \therefore \quad(\boldsymbol{a}, \boldsymbol{b})=(2.7402,2.7406) \\
& x_{4}=\frac{2.7402 f(2.7406)-2.7406 f(2.7402)}{f(2.7406)-f(2.7402)}=2.7405
\end{aligned}
$$

\therefore The Root of the given equation is 2.094 (Correct to three decimal places).

