Part A 2 Marks Questions

1. For any sets A,B and C prove that $A \times (B \cap C) = (A \times B) \cap (A \times C)$ Solution:

Let $(x, y) \in A \times (B \cap C)$ $x \in A \text{ and } y \in (B \cap C)$ $(x \in A \text{ and } y \in B) \text{ and } (x \in A \text{ and } y \in c)$ $(x, y) \in A \times B \text{ and } (x, y) \in A \times C$ $(x, y) \in (A \times B) \cap (A \times C)$ Hence $A \times (B \cap C) = (A \times B) \cap (A \times C)$

2. The following is the hasse diagram of a partially ordered set. Verify whether it is a lattice.

Solution:

d and e are the upper bounds of c and b. As d and e cannot be compared, therefore the $LUB \{c, b\}$ does not exists. The Hasse diagram is not a lattice.

3. Give an example of a relation which is symmetric, transitive but not reflexive on $\{a, b, c\}$

Solution:

 $R = \{(a, a), (a, b), (b, a), (b, b)\}$

4. Define partially ordered set.

A Set with a partially ordering relation is called a poset or partially ordered set.

5. Find the Partition of $A = \{0, 1, 2, 3, 4, 5\}$ with minsets generated by $B_1 = \{0, 2, 4\}$ and $B_2 = \{1, 5\}$. Solution:

 $B_1 \cap B_2 = \emptyset, B_1 \cup B_2 = \{0, 1, 2, 4, 5\} \neq A, (B_1 \cup B_2)' = \{3\}$ $B_1 \cup B_2 \cup (B_1 \cap B_2)' = \{0, 1, 2, 3, 4, 5\} = A$ Partition of $A = \{\{0, 2, 4\}, \{1, 5\}, \{3\}\}$

6. If a poset has a least element, then prove it is unique. Proof:

Let $\langle L, \leq \rangle$ be a poset with a_1, a_2 be two least elements. If a_1 is the least element, $a_1 \leq a_2$ If a_2 is the least element $a_2 \leq a_1$ By antisymmetric property $a_1 = a_2$ So that least element is unique.

7. If $R = \{(1, 1), (1, 2), (2, 3)\}$ and $S = \{(2, 1), (2, 2), (3, 2)\}$ are the relations on the set $A = \{1, 2, 3\}$. Verify whether RoS = SoR by finding the relation matrices of RoS and SoR.

Solution: $M_{R} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, M_{S} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ $M_{RoS} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} and M_{SoR} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ $M_{RoS} \neq M_{SoR} \Rightarrow RoS \neq SoR$

8. In the following lattice find $(b_1 \oplus b_3) * b_2$

Solution:

 $b_1 \oplus b_3 = 1$. Hence $(b_1 \oplus b_3) * b_2 = 1 * b_2 = b_2$

9. If $A_2 = \{\{1, 2\}, \{3\}\}, A_2 = \{\{1\}, \{2, 3\}\}$ and $A_3 = \{\{1, 2, 3\}\}$ then show that A_1, A_2 and A_3 are mutually disjoint. Solution: $A_1 \cap A_2 = \emptyset, A_1 \cap A_3 = \emptyset, A_2 \cap A_3 = \emptyset$

Hence A_1, A_2 and A_3 are mutually disjoint.

10. Let $x = \{1, 2, 3, 4\}$. If $R = \{< x, y > | x \in X \land y \in X \land (x - y) \text{ is an nonzero multiple of } 2 \}$ $S = \{< x, y > | x \in X \land y \in X \land (x - y) \text{ is an nonzero multiple of } 3 \}$ Find $R \cup S$ and $R \cap S$.

Solution:

 $R = \{(1,3), (3,1), (2,4), (4,2)\}, S = \{(1,4), (4,1)\}$ $R \cup S = \{(1,3), (3,1), (2,4), (4,2), (1,4), (4,1)\}, R \cap S = \emptyset$ $R \cap S = \{\langle x, y \rangle \mid x \in X \land y \in X \land (x - y) \text{ is an nonzero multiple of } 6 \}$

11. If R and S are reflexive relations on a set A, then show that $R \cup S$ and $R \cap S$ are also reflexive relations on A. Solution: Let $a \in A$. Since R and S are reflexive. We have $(a, a) \in R$ and $(a, a) \in S \Rightarrow (a, a) \in R \cap S$ Hence $R \cap S$ is reflexive. $(a, a) \in R$ or $(a, a) \in S \Rightarrow (a, a) \in R \cup S$

Hence $R \cup S$ is reflexive.

12. Define Equivalence relation. Give an example Solution:

A relation R in a set A is called an equivalence relation if it is reflexive, symmetric and transitive.

Eg: i) Equality of numbers on a set of real numbers

ii) Relation of lines being parallel on a set of lines in a plane.

13. Let $X = \{2, 3, 6, 12, 24, 36\}$ and the relation be such that $x \le y$ if f x divides y. Draw the Hasse Diagram of $\langle X, \le \rangle$.

Solution:

The Hasse diagram is

14. Let A be a given finite set and P(A) its power set. Let \subseteq be the inclusion relation on the elements of P(A). Draw Hasse diagram of $\langle P(A), \leq \rangle$ for $A = \{a, b, c\}$

Solution:

15. Verify $B \cup (\cap_{i \in I} A_i) = \cap_{i \in I} (B \cup A_i)$. If $A_1 = \{1, 5\}, A_2 = \{1, 2, 4, 6\}, A_3 = \{3, 4, 7\}, B = \{2, 4\}$ and $I = \{1, 2, 3\}$ Solution: $\cap_{i \in I} A_i = A_1 \cap A_2 \cap A_3 = \emptyset$ $B \cup (\cap_{i \in I} A_i) = \{2, 4\} \dots (1)$ $B \cup A_1 = \{1, 2, 4, 5\}, B \cup A_2 = \{1, 2, 4, 6\}, B \cup A_3 = \{2, 3, 4, 7\}$ $\cap_{i \in I} (B \cup A_i) = (B \cup A_1) \cap (B \cup A_2) \cap (B \cup A_3) = \{2, 4\} \dots (2)$ from (1) and (2) we get $B \cup (\cap_{i \in I} A_i) = \cap_{i \in I} (B \cup A_i)$

16. If $A = \{1, 2, 3\}, B = \{a, b\}$ find $A \times B$ and $B \times A$ and prove that $\boldsymbol{n}(\boldsymbol{A}\times\boldsymbol{B})=\boldsymbol{n}(\boldsymbol{B}\times\boldsymbol{A})$ Solution: $A \times B = \{(1, a), (2, a), (3, a), (1, b), (2, b), (3, b)\}, n(A \times B) = 6$ $B \times A = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}, n(B \times A) = 6$ $\therefore n(A \times B) = n(B \times A)$

17. Show that $(A \cap B)' = A' \cup B'$ **Proof:**

Let $x \in (A \cap B)' \Leftrightarrow x \notin (A \cap B)$ $\Leftrightarrow x \notin A \text{ or } x \notin B$ $\Leftrightarrow x \in A' \text{ or } x \in B'$ $\Leftrightarrow x \in A' \cup B'$

Hence $(A \cap B)' = A' \cup B'$

18. Draw venn diagram and prove $A - B = A \cap B'$ Solution:

$$A - B = A \cap B'$$

19. Find x and y given
$$(2x, x + y) = (6, 2)$$

Given two ordered pairs are equal if and only if corresponding components are equal.

$$2x = 6 \implies x = 3$$

 $x + y = 2 \Rightarrow 3 + y = 2 \Rightarrow y = -1$

20. Write the representing each of the relations from $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$

Solution:

Let $A = \{1, 2, 3\}$ and R be the relation defined on A corresponding to the given matrix. $\therefore R = \{(1,1), (1,2), (1,3), (2,1), (2,3), (3,1), (3,2), (3,3)\}$

21. Which elements of the poset $[\{2, 4, 5, 10, 12, 20, 25\}, /]$ are maximal and which are minimal?

(or)

Give an example for a poset that have more than one maximal element and more than one minimal element.

Solution:

 $A = [\{2, 4, 5, 10, 12, 20, 25\}, /], / is the division relation.$ The maximal elements are 12, 20, 25 and the minimal elements are 2,5.

Unit-III

Set Theory and Boolean Algebra

22. Define Lattice

A Lattice in a partially ordered set (L, \leq) in which every pair of elements $a, b \in L$ has the greatest lower bound and a least upper bound.

23. Let $\langle L, \leq angle$ be a lattice. For any $a, b, c \in L$ we have a * a = a

Solution:

Since $a \le a, a$ is a lower bound of $\{a\}$. If b is any lower bound of $\{a\}$, then we have $b \le a$. Thus we have $a \le a$ or $b \le a$ equivalently, a is an lower bound for $\{a\}$ and any other lower bound of $\{a\}$ is smaller than a. This shows that a is the greatest lower bound of $\{a\}$, i.e., $GLB\{a\} = a$

$\therefore a * a = GLB\{a\} = a$ **24. Define sublattice**

Let $\langle L, *, \bigoplus \rangle$ be a lattice and let $S \subseteq L$ be a subset of L. Then $\langle S, *, \bigoplus \rangle$ is a sublattice of $\langle L, *, \bigoplus \rangle$ iff S is closed under both operations * and \bigoplus .

25. Define Lattice Homomorphism

Let $\langle L, *, \bigoplus \rangle$ and $\langle S, \wedge, \vee \rangle$ be two lattices. A mapping $g: L \to S$ is called a lattice homomorphism from the lattice $\langle L, *, \bigoplus \rangle$ to $\langle S, \wedge, \vee \rangle$ if for any $a, b \in L$ $g(a * b) = g(a) \wedge g(b)$ and $g(a \oplus b) = g(a) \vee g(b)$

26. Define Modular

A lattice $(L, *, \oplus)$ is called modular if for all $x, y, z \in L$

 $x \leq z \Rightarrow x \oplus (y * z) = (x \oplus y) * z$

27. Define Distributive lattice.

A Lattice $\langle L, *, \oplus \rangle$ is called a distributive lattice if for any $a, b, c \in L$ $a * (b \oplus c) = (a * b) \oplus (a * c)$ $a \oplus (b * c) = (a \oplus b) * (a \oplus c)$

28. Prove that every distributive lattice is modular.

Proof:

Let $\langle L, *, \oplus \rangle$ be a distributive lattice. $\forall a, b, c \in L$ we have $, a \oplus (b * c) = (a \oplus b) * (a \oplus c) \dots (1)$ Thus if $a \leq c$ then $a \oplus c = c \dots (2)$ from (1) and (2) we get $a \oplus (b * c) = (a \oplus b) * c$ So if a * c, then $a \oplus (b * c) = (a \oplus b) * c$. $\therefore L$ is modular.

29. The lattice with the following Hasse diagram is not distributive and not modular.

Solution:

In this case, $(x_1 \oplus x_3) * x_2 = 1 * x_2 = x_2 \dots (1)$ And $(x_1 * x_2) \oplus (x_3 * x_2) = 0 \oplus x_3 = x_3 \dots (2)$ From (1) and (2) we get $(x_1 \oplus x_3) * x_2 \neq (x_1 * x_2) \oplus (x_3 * x_2)$ Hence the lattice is not distributive. $x_3 < x_2 \Rightarrow x_3 \oplus (x_1 * x_2) = x_3 \oplus 0 = x_3 \dots (3)$ $(x_3 \oplus x_1) * x_2 = 1 * x_2 = x_2 \dots (4)$ From (3) and (4) we get $x_3 \oplus (x_1 * x_2) \neq (x_3 \oplus x_1) * x_2$ Hence the lattice is not modular.

30. Prove that $A \subset B \Leftrightarrow A \cap B = A$

Proof:

```
i) Given A \subset B.
Let x \in A \cap B
\Rightarrow x \in A \text{ and } x \in B
\Rightarrow x \in A (In particular)
\therefore A \cap B \subset A \dots (1)
Let x \in A \Rightarrow x \in A and x \in B
\Rightarrow x \in A \cap B
\therefore A \subset A \cap B \dots (2)
From (1) and (2) we get
A \subset B \Rightarrow A = A \cap B
ii)Converse:
Let A = A \cap B to prove A \subset B
Let x \in A \Rightarrow x \in A \cap B
\Rightarrow x \in A \text{ and } x \in B
\Rightarrow x \in B (In particular)
\therefore A \subset B
From (i) and (ii) we get
\therefore A \subset B \Leftrightarrow A \cap B = A
```

PART-B

 i) Prove that distinct equivalence classes are disjoint. Solution: Let *R* be an equivalence relation defined on set *X*.

Let $[x]_R$, $[y]_R$ are two distinct equivalence classes on Xi.e., $x \not R y$

Let us assume that there is at least one element $z \in [x]_R$ and also $z \in [y]_R$ i.e., xRz and $yRz \Rightarrow zRy(By symmetric)$

 \therefore xRz and zRy \Rightarrow xRy(By transitivity)

Which is a contradiction.

$$[x]_R \cap [y]_R = \emptyset$$

:Distinct equivalence classes are disjoint.

ii) In a Lattice, show that a = b and $c = d \Rightarrow a * c = b * d$

Solution:

For any $a, b, c \in L$ If $a = b \Rightarrow c * a \le c * b$

$$\Rightarrow a * c \leq b * c \dots (1) (By Commutative law)$$

For any $b, c, d \in L$ If $c = d \Rightarrow b * c \le b * d \dots (2)$

From (1) and (2) we get

a * c = b * d

iii) In a distributive Lattice prove that

a * b = a * c and $a \oplus b = a \oplus c \Rightarrow b = c$.

Solution:

 $(a * b) \oplus c = (a * c) \oplus c = c \dots (1) [a * b = a * c \text{ and absorbtion law}]$ $(a * b) \oplus c = (a \oplus c) * (b \oplus c) [Distributive law]$

 $= (a \oplus b) * (b \oplus c) = (a \oplus b) * (c \oplus b) [a \oplus b = a \oplus c \text{ and commutative law}]$ = $(a * c) \oplus b = (a * b) \oplus b = b \dots (2) [Distributive and absorbtion law]$ From (1) and (2) we get,

b = c

2. i) Let $P = \{\{1,2\}, \{3,4\}, \{5\}\}\)$ be a partition of the set $S = \{1,2,3,4,5\}$. Construct an equivalence relation R on S so that the equivalence classes with respect to R are precisely the members of P.

Solution:

Let $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4), (5, 5)\}$ Since $(1, 1), (2, 2), (3, 3), (4, 4), (5, 5) \in R$

$$\therefore R \text{ is reflexive}$$
For (1,2), (3,4) $\in R$ there is (2,1), (4,3) $\in R$
 $\therefore R \text{ is Symmetric}$
For (1,2) and (2,1) $\in R$ there is (1,1) $\in R$
For (2,1) and (1,2) $\in R$ there is (2,2) $\in R$
For (3,4) and (4,3) $\in R$ there is (3,3) $\in R$
For (4,3) and (3,4) $\in R$ there is (4,4) $\in R$
 $\therefore R \text{ is transitive}$
 $\therefore R \text{ is transitive}$
 $\therefore R \text{ is an equivalence relation}$
 $[1]_R = \{1,2\}, [3]_R = \{3,4\}, [5]_R = \{5\}$
Equivalence classes with respect to $R = \{[1]_R, [3]_R, [5]_R\}$
The equivalence classes with respect to R are precisely the members of P

ii) Establish De Morgan's laws in a Boolean algebra

Solution: Let $a, b \in (B, *, \bigoplus, ', 0, 1)$ To prove $(a \oplus b)' = a' * b'$ $(a \oplus b) * (a' * b') = (a * (a' * b')) \oplus (b * (a' * b'))$ $= (a * (a' * b')) \oplus ((a' * b') * b)$ $= ((a * a') * b') \oplus (a' * (b' * b))$ $= (0 * b') \oplus (a' * 0) = 0 \oplus 0$ $(a \oplus b) * (a' * b') = 0 \dots (1)$ $(a \oplus b) \oplus (a' * b') = ((a \oplus b) \oplus a') * ((a \oplus b) \oplus b')$ $= ((b \oplus a) \oplus a') * ((a \oplus b) \oplus b')$ $= (b \oplus (a \oplus a')) * (a \oplus (b \oplus b'))$ $= (b \oplus 1) * (a \oplus 1) = 1 * 1$ $(a \oplus b) \oplus (a' * b') = 1 \dots (2)$ From (1) and (2) we get, $\therefore (a \oplus b)' = a' * b'$ To prove $(a * b)' = a' \oplus b'$ $(a * b) \oplus (a' \oplus b') = (a \oplus (a' \oplus b')) * (b \oplus (a' \oplus b'))$ $= (a \oplus (a' \oplus b')) * ((a' \oplus b') \oplus b)$ $= ((a \oplus a') \oplus b') * (a' \oplus (b' \oplus b))$ $= (1 \oplus b') * (a' \oplus 1) = 1 * 1$ $(a * b) \oplus (a' \oplus b') = 1 \dots (3)$ $(a * b) * (a' \oplus b') = ((a * b) * a') \oplus ((a * b) * b')$ $= ((b * a) * a') \oplus ((a * b) * b')$ $= (b * (a * a')) \oplus (a * (b * b'))$ $= (b * 0) \oplus (a * 0) = 0 \oplus 0$ $(a * b) * (a' \oplus b') = 0 \dots (4)$ From (3) and (4) we get,

$$(a * b)' = a' \oplus b'$$

i) A survey of 500 television watches produced the following information. 285 watch football games; 195 watch hockey games, 115 watch Basket ball games; 45 watch football and basket ball games; 70 watch football and hockey games; 50 watch hockey and basket ball games; 50 do not watch any of the three games. How many people watch exactly one of the three games? Solution:

Let U denote the television watchers Let A denote the football game watchers Let B denote the hockey game watchers Let C denote the basketball game watchers $|U| = 500, |A| = 285, |B| = 195, |C| = 115, |A \cap B| = 70, |A \cap C| = 45,$ $|B \cap C| = 50, |(A \cup B \cup C)'| = 50$ The shaded portion in the above venn diagram gives the number of people watch exactly one of the three games. $|(A \cup B \cup C)| = |U| - |(A \cup B \cup C)'| = 500 - 50 = 450$ The number of people watch all three games = $|A \cap B \cap C|$ We know that $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$ $450 = 285 + 195 + 115 - 70 - 45 - 50 + |A \cap B \cap C|$ $|A \cap B \cap C| = 20.$ $The number of people \\ watch football only \\ \end{bmatrix} = |A| - |A \cap B| - |A \cap C| + |A \cap B \cap C|$ $= 285 - 70 - 45 + 20 = 190 \dots (a)$ The number of people watch hockey only $= |B| - |A \cap B| - |B \cap C| + |A \cap B \cap C|$ $= 195 - 70 - 50 + 20 = 95 \dots (b)$ The number of people $= |C| - |B \cap C| - |A \cap C| + |A \cap B \cap C|$ $= 115 - 50 - 45 + 20 = 40 \dots (c)$ The number of people watch exactly one $\left\{ = (a) + (b) + (c) \right\}$ of the three games = 190 + 95 + 40 = 325

ii) In a Boolean algebra L, Prove that $(a \land b)' = a' \lor b', \forall a, b \in L$ Solution:

$$(a \land b) \lor (a' \lor b') = (a \lor (a' \lor b')) \land (b \lor (a' \lor b'))$$

$$= (a \lor (a' \lor b')) \land ((a' \lor b') \lor b)$$

$$= ((a \lor a') \lor b') \land (a' \lor (b' \lor b))$$

$$= (1 \lor b') \land (a' \lor 1) = 1 * 1$$

$$(a * b) \lor (a' \lor b') = 1 \dots (1)$$

$$(a \land b) \land (a' \lor b') = ((a \land b) \land a') \lor ((a \land b) \land b')$$

$$= ((b \land a) \land a') \lor ((a \land b) \land b')$$

$$= (b \land (a \land a')) \lor (a \land (b \land b'))$$

$$= (b \land 0) \lor (a \land 0) = 0 \lor 0$$

$$(a \land b) \land (a' \oplus b') = 0 \dots (2)$$
From (1) and (2) we get,

 $(a * b)' = a' \oplus b'$

4. i) Let the relation R be defined on the set of all real numbers by "if x, y are real numbers, $xRy \Leftrightarrow x - y$ is a rational number". Show that R is an equivalence relation.

Solution: \mathbb{R} – Set of all real numbers

```
i)\forall x \in \mathbb{R}, (x - x) is also a rational number \Rightarrow (x, x) \in \mathbb{R}
```

 \therefore The relation R is reflexive.

 $(ii) \forall x, y \in \mathbb{R} \text{ and } \forall (x, y) \in R \Rightarrow (x - y) \text{ is arational number}$

$$\Rightarrow$$
 (y - x) is also a rational number

 \Rightarrow (*y*, *x*) \in *R*

 \therefore The relation R is symmetric.

iii) $\forall x, y, z \in \mathbb{R}, \therefore \forall (x, y), (y, z) \in R$

 \Rightarrow (x - y) is a rational number and (y - z) is a rational number

 \Rightarrow (x - y) + (y - z) is also a rational number

 \Rightarrow (x – z) a rational number

$$\Rightarrow (x, z) \in R$$

∴ The relation R is transitive.

from (i), (ii) and (iii) we get

The relation R is equivalence relation.

ii) Draw the Hasse diagram of the lattice L of all subsets of *a*, *b*, *c* under intersection and union. Solution:

5. i) Define the relation *P* on {1,2,3,4} by $P = \{(a,b)/|a-b| = 1\}$. Determine the adjacency matrix of P² Solution:

 $P = \{(1,2), (2,1), (2,3), (3,2), (3,4), (4,3)\}.$

$$M_{P} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
$$M_{P^{2}} = M_{PoP} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

ii) Let (L, \leq) be a lattice. For any $a, b, c \in L$ if $b \leq c \Rightarrow a * b \leq a * c$ and $a \oplus b \leq a \oplus c$

Solution:

(a * b) * (a * c) = a * (b * a) * c = a * (a * b) * c= (a * a) * (b * c) = a * b $\therefore (a * b) * (a * c) = a * b$ $a * b \le a * c$ $(a \oplus b) * (a \oplus c) = a \oplus (b * c) = a \oplus c$ $\therefore a \oplus b \le a \oplus c$

iii)In a distributice lattice, show that

 $(a * b) \oplus (b * c) \oplus (c * a) = (a \oplus b) * (b \oplus c) * (c \oplus a)$ Solution:

$$(a * b) \oplus (b * c) \oplus (c * a) = (a * b) \oplus (c * b) \oplus (c * a)$$
$$= ((a \oplus c) * b) \oplus (c * a)$$
$$= (((a \oplus c) * b) \oplus c) * (((a \oplus c) * b) \oplus a)$$
$$= (((a \oplus c) \oplus c) * (b \oplus c)) * (((a \oplus c) \oplus a) * (b \oplus a))$$
$$= (((a \oplus c) \oplus c) * (b \oplus c)) * ((a \oplus (a \oplus c)) * (b \oplus a))$$
$$= ((a \oplus (c \oplus c)) * (b \oplus c)) * (((a \oplus a) \oplus c) * (b \oplus a))$$
$$= (a \oplus c) * (b \oplus c) * (a \oplus c) * (b \oplus a)$$
$$= (c \oplus a) * (b \oplus c) * (c \oplus a) * (a \oplus b)$$
$$= (b \oplus c) * (c \oplus a) * (c \oplus a) * (a \oplus b)$$
$$= (b \oplus c) * (c \oplus a) * (a \oplus b)$$
$$= (b \oplus c) * (a \oplus b) * (c \oplus a)$$
$$= (a \oplus b) * (b \oplus c) * (c \oplus a)$$

6. i) If R_1 and R_2 are equivalence relations in a set A, then prove that $R_1 \cap R_2$ is an equivalence relation in A.

Solution:

1) $\forall x \in A$, $(x, x) \in R_1$ and $(x, x) \in R_2 \Rightarrow (x, x) \in R_1 \cap R_2$ $\therefore \forall x \in A, (x, x) \in R_1 \cap R_2$ $\therefore R_1 \cap R_2$ is reflexive. 2) $\forall x \in A$ and $\forall (x, y) \in R$ $\cap R_2 \Rightarrow (x, y) \in R$ and $(x, y) \in R_1$

2) $\forall x, y \in A$, and $\forall (x, y) \in R_1 \cap R_2 \Rightarrow (x, y) \in R_1$ and $(x, y) \in R_2$ $\Rightarrow (y, x) \in R_1$ and $(y, x) \in R_2$

$$\Rightarrow$$
 (x, y) \in $R_1 \cap R_2$

 $\therefore R_1 \cap R_2$ is symmetric.

3)
$$\forall x, y, z \in A, and \ \forall (x, y), (y, z) \in R_1 \cap R_2$$

 $\Rightarrow (x, y), (y, z) \in R_1 and (x, y), (y, z) \in R_2$
 $\Rightarrow (x, z) \in R_1 and (x, z) \in R_2$
 $\Rightarrow (x, z) \in R_1 \cap R_2$

 $\therefore R_1 \cap R_2$ is transitive.

From (1),(2) and (3) we get

 $R_1 \cap R_2$ is an equivalence relation. ii) Simplify the Boolean expression $((x_1 + x_2) + (x_1 + x_3)) \cdot x_1 \cdot \overline{x_2}$

Solution:

$$((x_1 + x_2) + (x_1 + x_3)).x_1.\overline{x_2} = (x_1 + x_2).x_1.\overline{x_2} + (x_1 + x_3).x_1.\overline{x_2} = x_1.x_1.\overline{x_2} + x_2.x_1.\overline{x_2} + x_1.x_1.\overline{x_2} + x_3.x_1.\overline{x_2} = x_1.x_1.\overline{x_2} + x_1.x_2.\overline{x_2} + x_3.x_1.\overline{x_2} = x_1.\overline{x_2} + x_1.0 + x_3.x_1.\overline{x_2} = x_1.\overline{x_2} + x_3.x_1.\overline{x_2} = x_1.\overline{x_2} - x_3.x_1.\overline{x_2} = x_1.\overline{x_2} - x_3.x_1.\overline{x_2}$$

iii) State and prove the distributive inequalities of a lattice. Solution:

Let (L, \leq) be a lattice. For any $a, b, c \in L$ I) $a * (b \oplus c) \ge (a * b) \oplus (a * c)$ II) $a \oplus (b * c) \le (a \oplus b) * (a \oplus c)$ To prove $a * (b \oplus c) \ge (a * b) \oplus (a * c)$ From $a \ge a * b$ and $a \ge a * c \Rightarrow a \ge (a * b) \oplus (a * c) \dots (1)$ $b \oplus c \ge b \ge (a * b) \dots (2)$ $b \oplus c \ge c \ge (a * c) \dots (3)$ From (2) and (3) we get, $b \oplus c \ge (a * b) \oplus (a * c) \dots (4)$ From (1) and (4) we get, $a * (b \oplus c) \ge (a * b) \oplus (a * c)$ To prove $a \oplus (b * c) \le (a \oplus b) * (a \oplus c)$ From $a \oplus b \ge a$ and $a \oplus c \ge a \Rightarrow (a \oplus b) * (a \oplus c) \ge a \dots (5)$ $b * c \leq b \leq (a \oplus b) \dots (6)$ $b * c \leq c \leq (a \oplus c) \dots (7)$ From (6) and (7) we get, $b * c \leq (a \oplus b) * (a \oplus c) \dots (8)$ From (5) and (8) we get, $a * (b \oplus c) \ge (a * b) \oplus (a * c)$ $a \oplus (b * c) \le (a \oplus b) * (a \oplus c)$

7. i) If R is an equivalence relation on a set A, Prove that $[x]_R = [y]_R$ if and only if x R y where $[x]_R$ and $[y]_R$ denote equivalence classes containing x and yrespectively. Proof: Let *R* be an equivalence relation defined on set *X*. Let $x, y, z \in X$ Let us assume that $[x]_R = [y]_R$ Let $z \in [x]_R$ then xRz $\therefore z \in [y]_R$ then yRz (Since $[x]_R = [y]_R$) \Rightarrow zRy (By symmetry of R) xRz and $zRy \Rightarrow xRy(By transitive of R)$ $\therefore [x]_{R} = [y]_{R} \Rightarrow xRy \dots (1)$ Let us assume that xRy, so that $y \in [x]_R$ Because of symmetry of R, yRx, so that $x \in [y]_R$. Now if there is an element $z \in [y]_R$, then yRz. $xRy \text{ and } yRz \Rightarrow xRz (By \text{ transitive of } R). Thus z \in [x]_R$ $\therefore [y]_R \subseteq [x]_R \dots (2)$ By symmetry we also have $[x]_R \subseteq [y]_R \dots (3)$ from (2)and (3)we get $[x]_{R} = [y]_{R}$ $\therefore xRy \Rightarrow [x]_R = [y]_R \dots (4)$ from (1)and (4)we get $[x]_R = [y]_R$ if and only if x R yii) In a lattice show that $a \leq b \Leftrightarrow a * b = a \Leftrightarrow a \oplus b = b$ Solution: To prove $a \leq b \Leftrightarrow a * b = a$ Let us assume that $a \leq b$, we know that $a \leq a \therefore a \leq a * b \dots (1)$ From the definition we know that $a * b \le a \dots (2)$ From (1) and (2) we get a * b = a $\therefore a \leq b \Rightarrow a * b = a \dots (I)$ Now assume that a * b = a but it is possible iff $a \le b$ $\therefore a * b = a \Rightarrow a \leq b \dots (II)$ From (I) and (II) we get $a \leq b \Leftrightarrow a * b = a$ To prove $a * b = a \Leftrightarrow a \oplus b = b$ Let us assume that a * b = a $b \oplus (a * b) = b \oplus a = a \oplus b \dots (3)$ $b \oplus (a * b) = b \dots (4)$ From (3) and (4) we get $a \oplus b = b$ $\therefore a * b = a \Rightarrow a \oplus b = b \dots (III)$ Let us assume that $a \oplus b = b$

 $a * (a \oplus b) = a * b \dots (5)$ $a * (a \oplus b) = a \dots (6)$ From (5) and (6) we get a * b = a $\therefore a \oplus b = b \Rightarrow a * b = a \dots (IV)$

From (III) and (IV) we get $a * b = a \Leftrightarrow a \oplus b = b$

iii) Prove that every chain is a distributive lattice.Solution:

Let (L, \leq) be a chain and $a, b, c \in L$. Consider the following cases: (I) $a \leq b$ or $a \leq c$, and (II) $a \geq b$ and $a \geq c$ For (I)

$$a * (b \oplus c) = a \dots (1)$$
$$(a * b) \oplus (a * c) = a \oplus a = a \dots (2)$$

For (II)

$$a * (b \oplus c) = b \oplus c \dots (3)$$
$$a * b) \oplus (a * c) = b \oplus c \dots (4)$$

:.From (1),(2) and (3),(4)

$$a * (b \oplus c) = (a * b) \oplus (a * c)$$

∴Every chain is a distributive lattice

8. i) Show that every distributive lattice is a modular. Whether the converse is true? Justify your answer

Solution:

Let $a, b, c \in L$ and assume that $a \leq c$, then

$$a \oplus (b * c) = (a \oplus b) * (a \oplus c)$$

 $= (a \oplus b) * c$

∴Every distributive lattice is modular.

For example let us consider the following lattice

Here in this lattice

 $\forall a, b, c \in L, a \le b \Rightarrow a \oplus (b * c) = (a \oplus b) * c$

 \therefore The above lattice is modular.

$$a * (b \oplus c) = a * 1 = a \dots (1)$$
$$(a * b) \oplus (a * c) = 0 \oplus 0 = 0 \dots (2)$$
From (1) and (2) we get $a * (b \oplus c) \neq (a * b) \oplus (a * c)$

∴The above lattice is not distributive.

.. Every distributive lattice is a modular but its converse is not true.

ii) Find the sub lattices of $(D_{45}, /)$. Find its complement element. Solution:

 $D_{45} = \{1, 3, 5, 9, 15, 45\} under division rule$ $1 \oplus 45 = 45 and 1 * 45 = 1$ $\therefore Complement of 1 is 45$ $5 \oplus 9 = 45 and 5 * 9 = 1$ $\therefore Complement of 5 is 9$ $3 \oplus 15 = 15 and 3 * 15 = 3$ $\therefore 3 and 15 has no Complement$

 \therefore (D_{45} ,/) is not a complement lattice

The sub lattices of $(D_{45},/)$ are given below $S_1 = \{1,3,5,9,15,45\}, S_2 = \{1,3,9,45\}, S_3 = \{1,5,15,45\}, S_4 = \{1,3,5,15\}, S_5 = \{3,9,15,45\}, S_6 = \{1,3,9,15,45\}, S_7 = \{1,3,5,15,45\}, S_8 = \{1,3\}, S_9 = \{1,5\}, S_{10} = \{1,3,9\}, S_{11} = \{1,5,15\}, S_{12} = \{3,9,45\}, S_{13} = \{5,15,45\}, S_{14} = \{3,9\}, S_{15} = \{5,15\}, S_{16} = \{15,45\}, S_{17} = \{9,45\}, S_{18} = \{3,15\}$

iii) In any Boolean algebra, show that $a = b \Leftrightarrow ab' + a'b = 0$ *Proof:* Case i) To prove $a = b \Rightarrow ab' + a'b = 0$ $ab' = bb' = 0 \dots (1)[a = b and Complement law]$ $a'b = b'b = 0 \dots (2)[a = b and Complement law]$ $ab' + a'b = 0 + 0 = 0 \quad [from (1) and (2)]$ Case ii) To prove $ab' + a'b = 0 \Rightarrow a = b \dots (3)$ ab' + a'b = 0

Unit-III Set Theory and Boolean Algebra a + ab' + a'b = a + 0 [$b = c \Rightarrow a + b = a + c$] a + a'b = a [Absorbtion lawand a + 0 = a] (a + a')(a + b) = a[Distributive law] $1(a + b) = a \Rightarrow a + b = a \dots (4)$ [Complement law] Similarly from (3), we get ab' + a'b + b = 0 + b $[b = c \Rightarrow b + a = c + a]$ ab' + b = b [Absorption law and 0 + b = b] (a + b)(b' + b) = b[Distributive law] $(a+b)1 = b \Rightarrow a+b = b \dots (5)$ [Complement law] From (4) and (5) we get a = b9. i) Let (L, \leq) be a lattice. For any $a, b, c \in L$ the following holds, $a \leq c \Leftrightarrow a \oplus (b * c) \leq (a \oplus b) * c$ Solution: To prove $a \leq c \Rightarrow a \oplus (b * c) \leq (a \oplus b) * c$ Let us assume that $a \leq c$, $a \oplus (b * c) \le (a \oplus b) * (a \oplus c)$ [Distributive inequality] $\leq (a \oplus b) * c$ [Distributive inequality] To prove $a \oplus (b * c) \leq (a \oplus b) * c \Rightarrow a \leq c$ Let us assume that $a \oplus (b * c) \leq (a \oplus b) * c$ $(a \oplus b) * (a \oplus c) \leq (a \oplus b) * c[Distributive law]$ $\Rightarrow (a \oplus c) \le c \dots (1) \quad a * b \le a * c \Rightarrow b \le c$ $a \oplus (b * c) \leq (a \oplus b) * c$ $a \oplus (b * c) \leq (a * c) \oplus (b * c)$ [Distributive law] $\Rightarrow a \leq (a * c) \leq (a \oplus c) \leq c$ [Definition of * and \oplus and(1)] $\Rightarrow a \leq c$

ii) Prove that the direct product of any two distributive lattices is a distributive lattice.

Solution:

Let $(L, *, \bigoplus)$ and (S, \land, \lor) be two lattices and let $(L \times S, ., +)$ be the direct product of two lattices. For any $(a_1, b_1), (a_2, b_2)$ and $(a_3, b_3) \in L \times S$ $(a_1, b_1). ((a_2, b_2) + (a_3, b_3)) = (a_1, b_1). (a_2 \oplus a_3, b_2 \lor b_3)$ $= (a_1 * (a_2 \oplus a_3), b_1 \land (b_2 \lor b_3))$ $= ((a_1 * a_2) \oplus (a_1 * a_3), (b_1 \land b_2) \lor (b_1 \land b_3))$ $= (a_1, b_1). (a_2, b_2) + (a_1, b_1). (a_3, b_3)$

. The direct product of any two distributive lattices is a distributive lattice.

iii) Find the complement of every element of the lattice $\langle S_n, D \rangle$ for n = 75. Solution:

$$S_{45} = \{1, 3, 5, 15, 25, 75\} under division rule
1 \oplus 75 = 75 and 1 * 75 = 1
 \therefore Complement of 1 is 75
 $3 \oplus 25 = 75$ and $3 * 25 = 1$
 \therefore Complement of 3 is 25
 $5 \oplus 15 = 15$ and $5 * 15 = 5$
 $\therefore 5$ and 15 has no Complement$$

: It is not a complement lattice

10. i) Let Z be the set of integers and let R be the relation called "congruence modulo 3" defined by

 $R = \{(x, y) \mid x \in Z \land y \in Z \land (x - y) \text{ is divisible by 3} \}$

a) Prove that R is equivalence relation

b) Determine the equivalence classes generated by the elements of *Z*.

Solution:

a)
$$i$$
) $\forall x \in Z, (x - x)$ is divisible by $3 \Rightarrow (x, x) \in R$

∴ The relation R is reflexive.

$$\begin{split} ii) \forall x, y \in Z \text{ and } \forall (x, y) \in R \implies (x - y) \text{ is divisible by 3} \\ \implies (y - x) \text{ is also divisible by 3} \\ \implies (y, x) \in R \end{split}$$

 \therefore The relation R is symmetric.

 $iii) \forall x, y, z \in Z, :: \forall (x, y), (y, z) \in R$ $\Rightarrow (x - y) is divisible by 3 and (y - z) is divisible by 3$ $\Rightarrow (x - y) + (y - z) is divisible by 3$ $\Rightarrow (x - z) is divisible by 3$ $\Rightarrow (x, z) \in R$:: The relation R is transitive. from (i), (ii) and (iii) we get

The relation R is equivalence relation.

b) The equivalence classes are

$$[a]_{R} = \{\dots, a - 2k, a - k, a, a + k, a + 2k, \dots\}$$

where $a = 0, 1, 2, \dots, k - 1$ for congruence modulo k
 $[0]_{R} = \{\dots, -6, -3, 0, 3, 6, \dots\}$
 $[1]_{R} = \{\dots, -5, -2, 1, 4, 7, \dots\}$
 $[2]_{R} = \{\dots, -4, -1, 2, 5, 8, \dots\}$
 $Z/R = \{[0]_{R}, [1]_{R}, [2]_{R}\}$

ii) Write the Lattices of $(D_{35},/)$. Find its complements Solution:

 $D_{35} = \{1, 5, 7, 35\} under division rule$ $1 \oplus 35 = 35 and 1 * 35 = 1$ $<math>\therefore$ Complement of 1 is 35 $5 \oplus 7 = 35 and 5 * 7 = 1$ $<math>\therefore$ Complement of 5 is 7

