Unit-III - NUMERICAL DIFFERENTIATION

Derivatives using divided differences (Un Equal Intervals)

Derivatives Using Finite Differences

Newton' Forward Difference Formula To Compute The Derivatives

Consider the Newton' Forward Difference Formula

$$y(x) = y_0 + \frac{p}{1!} \Delta y_0 + \frac{p(p-1)}{2!} \Delta^2 y_0 + \frac{p(p-1)(p-2)}{3!} \Delta^3 y_0 + \frac{p(p-1)(p-2)(p-3)}{4!} \Delta^4 y_0 + \cdots$$
$$y(x) = y_0 + \frac{p}{1!} \Delta y_0 + \frac{p^2 - p}{2!} \Delta^2 y_0 + \frac{p^3 - 3p^2 + 2p}{3!} \Delta^3 y_0 + \frac{p^4 - 6p^3 + 11p^2 - 6p}{4!} \Delta^4 y_0 + \cdots$$

where $p = \frac{x - x_0}{h}$.

The first derivative of y at $x = x_0 + ph$ is $\frac{dy}{dx} = \frac{dy}{dp} \cdot \frac{dp}{dx}$.

$$\frac{dy}{dx} = \frac{1}{h} \left[\Delta y_0 + \frac{2p-1}{2} \Delta^2 y_0 + \frac{3p^2 - 6p + 2}{6} \Delta^3 y_0 + \frac{2p^3}{12} \frac{9p^2 + 11p - 3}{12} \Delta^4 y_0 + \cdots \right]$$

lerivative of y at $x = x_0 + ph$ is

N

The second derivative of $y at x = x_0 + ph$ is

$$\frac{d^2 y}{dx^2} = \frac{1}{h^2} \left[\Delta^2 y_0 + (p-1) \Delta^3 y_0 + \frac{6p^2 - 18p + 11}{12} \Delta^4 y_0 + \cdots \right]$$

The third derivative of *y* at $x = x_0 + ph$ is 5

$$\frac{d^3y}{dx^3} = \frac{1}{h^3} \left[\frac{12p - 18}{12} \Delta^4 y_0 + \cdots \right]$$

The above formulas are used to find the derivatives nearer to $x = x_0$.

Suppose that when $x=x_0 \, that \, is \, p=0$, the above formula become

$$\frac{dy}{dx} = \frac{1}{h} \left[\Delta y_0 - \frac{\Delta^2 y_0}{2} + \frac{\Delta^3 y_0}{3} - \frac{\Delta^4 y_0}{4} + \cdots \right] \text{ when } x = x_0$$
$$\frac{d^2 y}{dx^2} = \frac{1}{h^2} \left[\Delta^2 y_0 - \Delta^3 y_0 + \frac{11}{12} \Delta^4 y_0 + \cdots \right] \text{ when } x = x_0$$
$$\frac{d^3 y}{dx^3} = \frac{1}{h^3} \left[\Delta^3 y_0 - \frac{18}{12} \Delta^4 y_0 + \cdots \right] \text{ when } x = x_0$$

Newton' Forward Difference Formula To Compute The Derivatives

Consider the Newton' Forward Difference Formula

$$y(x) = y_{u} + \frac{p}{1!} \nabla y_{u} + \frac{p(p+1)}{2!} \nabla^{2} y_{u} + \frac{p(p+1)(p+2)}{3!} \nabla^{3} y_{u} + \frac{p(p+1)(p+2)(p+3)}{4!} \nabla^{4} y_{u} + \cdots$$
$$y(x) = y_{u} + \frac{p}{1!} \nabla y_{u} + \frac{p^{2} + p}{2!} \nabla^{2} y_{u} + \frac{p^{3} + 3p^{2} + 2p}{3!} \nabla^{3} y_{u} + \frac{p^{4} + 6p^{3} + 11p^{2} + 6p}{4!} \nabla^{4} y_{u} + \cdots$$

where $p = \frac{x - x_n}{h}$.

The first derivative of y at $x = x_n + ph$ is $\frac{dy}{dx} = \frac{dy}{dy} \cdot \frac{dp}{dx}$

$$\frac{dy}{dx} = \frac{1}{h} \left[\nabla y_n + \frac{2p+1}{2} \nabla^2 y_n + \frac{3p^2 + 6p + 2}{6} \nabla^3 y_n + \frac{2p^3 + 9p^2 + 11p + 3}{12} \nabla^4 y_n + \cdots \right]$$

The second derivative of y at $x = x_n + ph$ is

$$\frac{d^2 y}{dx^2} = \frac{1}{h^2} \left[\nabla^2 y_n + (p+1) \nabla^3 y_n + \frac{6p^2 + 18p + 11}{12} \nabla^4 y_n + \cdots \right]$$

at $x = x_n + ph$ is
$$\frac{d^3 y}{dx^2} = \frac{1}{h^2} \left[\nabla^3 y_n + \frac{12p + 18}{12} \nabla^4 y_n + \cdots \right]$$

The third derivative of y at $x = x_n + ph$ is

$$\frac{d^3y}{dx^3} = \frac{1}{h^3} \left[\nabla^3 y_u + \frac{12p+18}{12} \nabla^4 y_u + \dots \right]$$

The above formulas are used to find the derivatives nearer to $x = x_{11}$.

Suppose that when $x = x_n$ that is p = 0 , the above formula become

$$\frac{dy}{dx} = \frac{1}{h} \left[\nabla y_{u} + \frac{\nabla^{2} y_{u}}{2} + \frac{\nabla^{3} y_{u}}{3} + \frac{\nabla^{4} y_{u}}{4} + \cdots \right] \text{ when } x = x_{u}$$

$$\frac{d^{2} y}{dx^{2}} = \frac{1}{h^{2}} \left[\nabla^{2} y_{u} + \nabla^{3} y_{u} + \frac{11}{12} \nabla^{4} y_{u} + \cdots \right] \text{ when } x = x_{u}$$

$$\frac{d^{3} y}{dx^{3}} = \frac{1}{h^{3}} \left[\nabla^{3} y_{u} + \frac{18}{12} \nabla^{4} y_{u} + \cdots \right] \text{ when } x = x_{u}$$

Example : 1 Find the first and second derivative of y at x = 15 from the table below.

x :	15	17	19	21	23	25
y :	3.873	4.123	4.359	4.583	4.796	5.000

x	У	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$	$\Delta^5 y$
15 (x ₀)	3.873(y ₀)	$4.123 - 3.873 = 0.250 \ (\Delta y_0)$	$-0.014 (\Delta^2 y_0)$			
				0.002 $(\Delta^3 y_0)$		
17 (x_1)	4.123 (y ₁)	$4.359 - 4.123 = 0.236 (\Delta y_1)$	$-0.012 (\Delta^2 y_1)$		$-0.001 (\Delta^4 y_0$	
				$0.001 (\Delta^3 y_1)$		$-0.001(\Delta^5 y_0)$
19 (x_2)	4.359 (y ₂)	$4.583 - 4.359 = 0.224 (\Delta y_2)$	$-0.011 (\Delta^2 y_2)$		$0.001 (\Delta^4 y_1)$	
				$0.002 (\Delta^3 y_2)$	1.1953.1172.0955	
21 (x_3)	4.583 (y ₃)	$4.796 - 4.583 = 0.213 (\Delta y_3)$	$-0.009 (\Delta^2 y_3)$			
			2			

23 (x ₄)	4.796 (y ₄)	$5.000 - 4.583 = 0.204 \ (\Delta y_4)$		
25 (x ₅)	5.00 (y ₅)			

To find y at x = 15, that is $x = x_0$. Here h = 2 (Difference of $x_1 - x_0$)

We know that

$$\left(\frac{dy}{dx}\right)_{x=x_0} = \frac{1}{h} \left[\Delta y_0 - \frac{\Delta^2 y_0}{2} + \frac{\Delta^3 y_0}{3} - \frac{\Delta^4 y_0}{4} + \cdots \right] \text{ when } x = x_0$$

$$\left(\frac{dy}{dx}\right)_{x=15} = \frac{1}{2} \left[0.250 - \frac{(-0.014)}{2} + \frac{0.002}{3} - \frac{(-0.001)}{4} + \frac{0.002}{5} \right]$$

$$\left(\frac{dy}{dx}\right)_{x=15} = 0.1291c$$

$$\left(\frac{d^2 y}{dx^2}\right)_{x=x_0} = \frac{1}{h^2} \left[\Delta^2 y_0 - \Delta^3 y_0 + \frac{11}{12} \Delta^4 y_0 + \cdots \right] \text{ when } x = x_0$$

$$\left(\frac{d^2 y}{dx^2}\right)_{x=15} = -0.0046$$

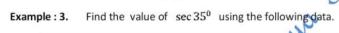
Example : 2. Find the first and second derivative of y at x = 54 from the table below.

x :	50	51	52	53	54
y :	3.6840	3.7084	3.7325	3.7563	3.7798

x	у	∇y	$\nabla^2 y$	$\nabla^3 y$	$\nabla^4 y$
50 (x_0)	$3.6840 (y_0)$				
		[∇y ₁] 0.0244			
51 (x_1)	3.7084 (y ₁)	Para a statut for bookst	$[\nabla^2 y_2] = 0.0003$		
		$[\nabla y_2]$ 0.0241	of t ⁴ - Charlet Ku	$[\nabla^3 y_3]$ 0.0	
52 (x_2)	3.7325 (y ₂)		$[\nabla^2 y_3] = 0.0003$		$[\nabla^4 y_3]$ 0.0
		[∇y ₃] 0.0238		$[\nabla^3 y_4]$ 0.0	
53 (x_3)	3.7563 (y ₃)		$[\nabla^2 y_4] = 0.0003$		
		[∇y ₄] 0.0235			
54 (x_4)	3.7798 (y ₄)				

To find y at x = 54, that is $x = x_n$. Here h = 1 (Difference of $x_1 - x_0$) 3 We know that

$$\begin{split} \left(\frac{dy}{dx}\right)_{x=x_{n}} &= \frac{1}{h} \left[\nabla y_{u} + \frac{\nabla^{2} y_{u}}{2} + \frac{\nabla^{3} y_{u}}{3} + \frac{\nabla^{4} y_{u}}{4} + \cdots \right] \text{ when } x = x_{u} \\ \left(\frac{dy}{dx}\right)_{x=54} &= \frac{1}{1} \left[0.0235 + \frac{(-0.0003)}{2} + \frac{0}{3} + 0 \right] \\ \left(\frac{dy}{dx}\right)_{x=54} &= 0.02365 - \frac{0.0003}{2} \\ \left(\frac{dy}{dx}\right)_{x=54} &= 0.02335. \\ \left(\frac{d^{2} y}{dx^{2}}\right)_{x=54} &= \frac{1}{h^{2}} \left[\nabla^{2} y_{u} + \nabla^{3} y_{u} + \frac{11}{12} \nabla^{4} y_{u} + \cdots \right] \text{ when } x = x_{u} \\ \left(\frac{d^{2} y}{dx^{2}}\right)_{x=54} &= \frac{1}{1} \left[-0.0003 + 0 \right] \\ \left(\frac{d^{2} y}{dx^{2}}\right)_{x=54} &= -0.0003. \end{split}$$



x :	31	32	33	34
y :	0.6008	0.6249	0.6494	0.6745
olution :				3

х	У	Δy=	$\Delta^2 y$	Δ³y
31 (x ₀)	0.6008 (y ₀)	0.0241 (Δy ₀)		
32 (x ₁)	$0.6249(y_1)$		0.0004 $(\Delta^2 y_0)$	
		0.0245 (Δy ₁)		$0.0002 (\Delta^3 y_0)$
33 (x ₂)	0.6494 (y ₂)		$0.0006 (\Delta^2 y_1)$	
		0.0251 (Δy ₂)		
$34(x_3)$	$0.6745(y_2)$			

To find y at x = 31, that is $x = x_0$. Here $h = 1^0 = 0.01745$ (Difference of $x_1 - x_0$)

We know that

$$\left(\frac{dy}{dx}\right)_{x=x_0} = \frac{1}{h} \left[\Delta y_0 - \frac{\Delta^2 y_0}{2} + \frac{\Delta^3 y_0}{3} - \frac{\Delta^4 y_0}{4} + \cdots \right] \text{ when } x = x_0$$
$$\left(\frac{dy}{dx}\right)_{x=15} = \frac{1}{0.01745} \left[0.0421 - \frac{(0.0004)}{2} + \frac{0.0002}{3} \right]$$

$$\left(\frac{dy}{dx}\right)_{x=15} = \frac{1}{0.01745} \left[0.023967 \right] = 1.3732$$
$$\sec 31^0 = 1.3732$$

Find the first and second derivative of $y \ at \ x = 1.5 \ \& \ 4.0$ from the table. Example : 4.

x:	1.5	2.0	5.5	3.0	3.5	4.0
y :	3.375	7.000	13.625	24.00	38.875	59.00

olution :

x	У	Δy	$\Delta^2 y$	$\Delta^3 y$	Δ ⁴ <i>y</i>
$1.5(x_0)$	3.375(y ₀)	$[\nabla y_0]$ 3.625 (Δy_0)			
2.0 (x_1)	7.000 (y ₁)		$[\nabla^2 y_1]$ 3.000 $(\Delta^2 y_0)$	[173] o == (+3)	
2.5 (x_2)	13.625 (y ₂)	$[\nabla y_1]$ 6.625 (Δy_1)	$[\nabla^2 y_2]$ 3.750 $(\Delta^2 y_1)$	$[\nabla^3 y_2] 0.75 \left(\Delta^3 y_0 \right)$	$0 (\Delta^4 y_0)$
1.222-144		$[\nabla y_2]$ 10.375 (Δy_2)		$[\nabla^3 y_3] 0.75 (\Delta^3 y_1)$	
3.0 (x_3)	24.00 (y ₃)	[V ₁₁] 14975 (A);)	$[\nabla^2 y_3]$ 4.500 ($\Delta^2 y_2$)	$[\nabla^3 y_4] 0.75 (\Delta^3 y_2)$	$0 (\Delta^4 y_1)$
3.5 (<i>x</i> ₄)	38.875 (y ₄)	$[\nabla y_3]$ 14.875 (Δy_3)	$[\nabla^2 y_4]$ 5.250 $(\Delta^2 y_3)$	$[v y_4] 0.75 (\Delta y_2)$	
4.0 (x ₅)	59.00 (y _s)	$[\nabla y_4]$ 20.125 (Δy_4)	N		

To find y at
$$x = 1.5$$
, that is $x = x_0$. Here $h = 0.5$ (Difference of $x_1 - x_0$)
We know that

We know that

$$\begin{pmatrix} \frac{dy}{dx} \end{pmatrix}_{x=x_0} = \frac{1}{h} \begin{bmatrix} \Delta y_0 - \frac{\Delta^2 y_0}{2} + \frac{\Delta^3 y_0}{3} - \frac{\Delta^4 y_0}{4} + \cdots \end{bmatrix} \text{ when } x = x_0$$

$$\begin{pmatrix} \frac{dy}{dx} \end{pmatrix}_{x=1.5} = \frac{1}{0.5} \begin{bmatrix} 3.625 - \frac{(3.000)}{2} + \frac{0.75}{3} \end{bmatrix}$$

$$\begin{pmatrix} \frac{dy}{dx} \end{pmatrix}_{x=1.5} = 4.750$$

$$\text{And } \begin{pmatrix} \frac{d^2 y}{dx^2} \end{pmatrix}_{x=x_0} = \frac{1}{h^2} \begin{bmatrix} \Delta^2 y_0 - \Delta^3 y_0 + \frac{11}{12} \Delta^4 y_0 + \cdots \end{bmatrix} \text{ when } x = x_0$$

$$\begin{pmatrix} \frac{d^2 y}{dx^2} \end{pmatrix}_{x=x_0} = \frac{1}{0.5^2} [3.000 - 0.75]$$

$$\left(\frac{d^2y}{dx^2}\right)_{x=x_0} = 9.000$$

To find $y \ at \ x = 4$, that is $x = x_n$. Here h = 0.5 (Difference of $x_1 - x_0$) We know that

$$\begin{aligned} \left(\frac{dy}{dx}\right)_{x=x_{n}} &= \frac{1}{h} \left[\nabla y_{n} + \frac{\nabla^{2} y_{n}}{2} + \frac{\nabla^{3} y_{n}}{3} + \frac{\nabla^{4} y_{n}}{4} + \cdots \right] \text{ when } x = x_{n} \\ \left(\frac{dy}{dx}\right)_{x=4,0} &= \frac{1}{0.5} \left[20.125 + \frac{5.250}{2} + \frac{0.750}{3} \right] \\ \left(\frac{dy}{dx}\right)_{x=4,0} &= 46 \end{aligned}$$

$$And \quad \left(\frac{d^{2} y}{dx^{2}}\right)_{x=x_{n}} &= \frac{1}{h^{2}} \left[\nabla^{2} y_{n} + \nabla^{3} y_{n} + \frac{11}{12} \nabla^{4} y_{n} + \cdots \right] \text{ when } x = x_{n} \\ \left(\frac{d^{2} y}{dx^{2}}\right)_{x=4} &= \frac{1}{0.5^{2}} \left[5.250 + 0.75 \right] \\ \left(\frac{d^{2} y}{dx^{2}}\right)_{x=4} &= 24 \end{aligned}$$

Example : 5. Find the first and second derivative of y as x = 1.2 from the table below.

			1	X		
x:	1	2	00	3 4	5	
y :	0	1 🔪	5	6	8	
olution :		a	2.			
x	У	L	Δ ²	² y	∆³y	$\Delta^4 y$
$1(x_0)$	0(y ₀)					
		1 (Δy_0)				
2 (x_1)	1 (y ₁)		3 (Δ	$^{2}y_{0})$		
		4 (Δy ₁)			$-6 (\Delta^3 y_0)$	
3 (x ₂)	5 (y ₂)		-3 (4	$\Delta^2 y_1$)		10 $(\Delta^4 y_0)$
		1 (Δy ₂)			$4(\Delta^{3}y_{1})$	
4 (x ₃)	6 (y ₃)		1 (Δ	$^{2}y_{2})$		
		2 (Δy ₂)				
5 (x_4)	8 (y ₄)					
ofind y at $x =$	= 1.2, [Near	rer to x_0]. H	Here $h = 1$ (Differen	ce of $x_1 - $	x_0)

We know that

$$\frac{dy}{dx} = \frac{1}{h} \left[\Delta y_0 + \frac{2p-1}{2} \Delta^2 y_0 + \frac{3p^2 - 6p + 2}{6} \Delta^3 y_0 + \frac{2p^3 - 9p^2 + 11p - 3}{12} \Delta^4 y_0 + \cdots \right]$$
Where $p = \frac{x - x_0}{h}$, Since $x = 1.2$, $x_0 = 1$, $h = 1$
 $\therefore p = \frac{1.2 - 1}{1} = 0.2$

$$\left(\frac{dy}{dx}\right)_{x=1.2} = \frac{1}{1} \left[1 + \frac{2(0.2) - 1}{2} (3) + \frac{3(0.2)^2 - 6(0.2) + 2}{6} (-6) + \frac{2(0.2)^3 - 9(0.2)^2 + 11(0.2) - 3}{12} (10) \right]$$
 $= 1 - 0.9 - 0.92 - 0.9533$

$$\left(\frac{dy}{dx}\right)_{x=1.2} = -1.773$$
And
 $\frac{d^2 y}{dx^2} = \frac{1}{h^2} \left[\Delta^2 y_0 + (p-1) \Delta^3 y_0 + \frac{6p^2 - 18p + 11}{12} \Delta^4 y_0 + \cdots \right]$
 $\left(\frac{d^2 y}{dx^2}\right)_{x=1.2} = \frac{1}{1} \left[3 + (0.2 - 1) (-6) + \frac{6(0.2)^2 - 18(0.2) + 11}{12} (-10) \right]$
 $= 3 + 4.8 + 6.366$

Example : 6. Find the first and second derivative of x = 2.9 from the table below.

x:	1	1.5	2	2.5	3		
y :	27	106.75	324	783.75	1621		
Solution			0)6				
x	У	Δյ	,	$\Delta^2 y$	Δ ³	у	$\Delta^4 y$
$1(x_0)$	27 (y ₀)						
		[∇y ₀] 2	79.75	$[\nabla^2 y_1]$ 137.5			
$1.5(x_1)$	$106.75(y_1)$				$[\nabla^3 y_2]$	0.5	
		[∇y ₁] 2	17.25	$[\nabla^2 y_2]$ 242.5			$30 \left(\nabla^4 y_0 \right)$
$2(x_2)$	$324(y_2)$				$\nabla^3 v_2$	135	

2 (x_2)	$324(y_2)$			$\left[\nabla^3 y_3\right] 135$	
		$[\nabla y_2]$ 459.75	$[\nabla^2 y_3]$ 377.5	[20]	
2.5 (x_3)	783.25 (y ₃)				
		[∇y ₃] 837.25			
3 (x_4)	$1621(y_4)$				

To find y at x = 2.9, [Nearer to x_n]. Here h = 0.5 (Difference of $x_1 - x_0$)

7

We know that

$$\begin{aligned} \frac{dy}{dx} &= \frac{1}{h} \left[\nabla y_{u} + \frac{2p+1}{2} \nabla^{2} y_{u} + \frac{3p^{2}+6p+2}{6} \nabla^{3} y_{u} + \frac{2p^{3}+9p^{2}+11p+3}{12} \nabla^{4} y_{u} + \cdots \right] \\ Where \ p &= \frac{x-x_{u}}{h}, \ Since \ x = 2.9, \ x_{u} = 3, \ h = 0.5 \\ \therefore \ p &= \frac{2.9-3}{0.5} = -0.2 \\ \left(\frac{dy}{dx}\right)_{x=2.9} &= \frac{1}{0.5} \left[837.5 + \frac{2(-0.2)+1}{2} (377.5) + \frac{3(-0.2)^{2}+6(-0.2)+2}{6} (135) + \frac{2(-0.2)^{3}-9(-0.2)^{2}+11(-0.2)+3}{12} (30) \right] \\ &= \frac{1}{0.5} \left[837.5 + 113.25 + 20.7 + 1.06 \right] \\ \left(\frac{dy}{dx}\right)_{x=1.2} &= 1945.02 \\ And \qquad \frac{d^{2}y}{dx^{2}} &= \frac{1}{h^{2}} \left[\nabla^{2} y_{u} + (p+1) \nabla^{3} y_{u} + \frac{6p^{2}+18(p+1)}{42} \nabla^{4} y_{u} + \cdots \right] \\ \left(\frac{d^{2}y}{dx^{2}}\right)_{x=2.9} &= \frac{1}{0.5^{2}} \left[377.5 + (-0.2+1) (185) + \frac{6(-0.2)^{2}+18(-0.2)+11}{12} (30) \right] \\ &= \frac{1}{0.25} \left[377.5 + 108 + 19.1 \right] \end{aligned}$$

Maximum and Minimum value of the given data

Example 6.	Find the maximum value of y for the following data	a.
Example 0.	Find the maximum value of y for the following u	au

x:	1.2	1.3	1.4	1.5	1.6
y :	0.9320	0.9636	0.9855	0.9975	0.9996

Solution :

$\Delta^3 y$	$\Delta^2 y$	Δy	У	x
	$-0.0097 (\Delta^2 y_0)$	0.0316 (Δy_0)	0.9320(y ₀)	1.2 (x_0)
$0 (\Delta^3 y_0) A p$	$-0.0099 (\Delta^2 y_1)$	0.0219 (Δy ₁)	0.9636 (y ₁)	1.3 (x ₁)
$0 (\Delta^3 y_1)$	-0.0099 (Δ ² y ₂)	0.0120 (Δy ₂)	0.9855 (y ₂)	1.4 (x ₂)

1.5 (x ₃)	0.9975 (y ₃)	0.0021 (Δy ₂)	
1.6 (x_4)	0.9996 (y ₄)		

Let us choose $x_0 = 1.2$

$$\left(\frac{dy}{dx}\right)_{x=x_0} = \frac{1}{h} \left[\Delta y_0 + \frac{2p-1}{2} \Delta^2 y_0 + \frac{3p^2 - 6p + 2}{6} \Delta^3 y_0 + \cdots \right]$$

For Maximum or Minimum $\frac{dy}{dx} = 0$, therefore we have

$$\Delta y_{0} + \frac{2p-1}{2} \Delta^{2} y_{0} + \frac{3p^{2} - 6p + 2}{6} \Delta^{3} y_{0} + \dots = 0$$

$$0.0316 + \frac{2p-1}{2} (-0.0097) = 0 \implies \frac{2p-1}{2} (-0.0097) \equiv -0.0316$$

$$\Rightarrow \frac{2p-1}{2} = -\frac{0.0316}{(-0.0097)} \implies 2p - 1 \neq 2 (3.2577)$$

$$\Rightarrow 2p = 6.5155 + 1 \implies p = \frac{7.5155}{2}$$

$$\Rightarrow p = 3.8 (app)$$

$$x_{0} + ph \implies x = 1.2 + 3.8(0.13)$$

Hence x =

To find Maximum value of y: For finding the maximum value of y we use Newton's Backward interpolation formula. We have

$$y(x) = y(x_0 + ph) = y_u + p \nabla y_u + \frac{p (p+1)}{2!} \nabla^2 y_u + \dots \text{ where } p = \frac{x - x_u}{h}$$

That is $p = \frac{1.58 - 1.6}{0.1} = -0.2$
 $y(x) = y(1.58) = 0.9996 + (-0.2) (0.0021) + \frac{(-0.2) (-0.2 + 1)}{2} (-0.0099)$
 $y(x) = y(1.58) = 0.9996 - 0.0004 + 0.0008$
 $y(x) = y(1.58) = 1$

....

 \therefore The Maximum value of y is 1.

Example 2: Find the minimum value of y for the following data.

x:	0.60	0.65	0.70	0.75
<i>y</i> :	0.6221	0.6155	0.6138	0.6170

Solution :

x	У	Δy	$\Delta^2 y$	$\Delta^3 y$
0.60 (x ₀)	0.6221(y ₀)	-0.0066 (Δy ₀)		
0.65 (x ₁)	0.6155 (y ₁)	-0.0017 (Δy ₁)	0.0049 (Δ²y ₀)	$0 (\Delta^3 y_0)$
0.70 (x ₂)	0.3138 (y ₂)	0.0032 (Δy ₂)	0.0049 (Δ ² y ₁)	0 (2 90)
0.75 (x ₃)	0.6170 (y ₃)	0.0032 (292)		

Let us choose $x_0 = 0.60$

$$\left(\frac{dy}{dx}\right)_{x=x_0} = \frac{1}{h} \left[\Delta y_0 + \frac{2p-1}{2} \Delta^2 y_0 + \frac{3p^2 - 6p + 2}{6} \Delta^3 y_0 + y_0 \right] 0^{1/2}$$

For Maximum or Minimum $\frac{dy}{dx} = 0$, therefore we have 2n-1 $3n^2 - 6n + 2$

$$\Delta y_0 + \frac{2p-1}{2} \Delta^2 y_0 + \frac{3p^2 - 6p + 2}{6} \Delta^3 y_0 + \dots = 0$$

-0.0066 + $\left(\frac{2p-1}{2}\right) (0.0049) = 0 \implies \frac{2p-1}{2} (0.0049) = +0.0066$
$$\implies \frac{2p-1}{2} = -\frac{0.0066}{(0.0049)} \implies 2p - 1 = 2 (1.3469)$$

$$\implies 2p = 2.6939 + 1 \implies p = \frac{3.6939}{2}$$

$$\Rightarrow$$
 $p = 1.8469 (app)$

Hence $x = x_0 + ph \implies x = 1.2 + 1.8469(0.05)$

x = 0.6923

To find Maximum value of y:

For finding the minimum value of y we use **Newton's Forward interpolation** formula.

We have

$$y(x) = y(x_0 + ph) = y(x) = y_0 + p \nabla y_0 + \frac{p(p-1)}{2!} \nabla^2 y_0 + \frac{p(p-1)(p-2)}{3!} \nabla^3 y_0 + \cdots$$

That is
$$p = \frac{0.6923 - 0.60}{0.05} = 1.8469$$
 [Since $p = \frac{x - x_0}{h}$]
 $y(x) = y(0.6923) = 0.6211 + (1.8469)(-0.0066) + \frac{(1.8469)(0.8469)}{2}(0.0049)$
 $y(x) = y(0.6923) = 0.6211 - 0.012189 + 0.003832$
 $y(x) = y(0.6923) = 0.6137$

:. The Minimum value of y is 0.3167.

Derivatives at Points near the Middle of the data

Stirling's Formula

$$\left(\frac{dy}{dx}\right)_{x=x_0} = \frac{1}{h} \left[\frac{1}{2}(\Delta y_0 + \Delta y_{-1}) - \frac{1}{12}(\Delta^3 y_{-1} + \Delta^3 y_{-2}) + \frac{1}{60}(\Delta^5 y_{-2} + \Delta^5 y_{-3}) + \dots \right]$$

$$\left(\frac{d^2 y}{dx^2}\right)_{x=x_0} = \frac{1}{h} \left[\Delta^2 y_{-1} - \frac{1}{12}\Delta^4 y_{-2} + \dots \right]$$

Example 1 : Find the First & Second derivatives of the function 2^{10} from the following data.

180	1500	1200	900	600	300	0	x :
193	205	201	183	157	149	135	y :
	205	201	183	157	149		y: olution :

x	У	Dy G	∆3y	$\Delta^3 y$	$\Delta^4 y$	$\Delta^5 y$
0 (x_{-3})	135 (y ₋₃)	athing				
$300(x_{-2})$	149 (y ₋₂)	5 (Ay 13)	$-6 (\Delta^2 y_{-3})$ 18 $(\Delta^2 y_{-2})$			
	(2005) - May 14	8 (Δy ₋₂)		24 ($\Delta^3 y_{-3}$)		
600 (x_{-1})	157 (y ₋₁)		18 $(\Delta^2 y_{-2})$ -8 $(\Delta^2 y_{-1})$		$-50 (\Delta^4 y_{-3})$	
		26 (Δy ₋₁)		$-26 (\Delta^3 y_{-2})$		70 $\Delta^5 y_{-3}$
900 (x_0)	$183(y_0)$		$-8 (\Delta^2 y_{-1})$		$20(\Delta^4 y_{-2})$	
		18 (Δy_0)		$-6 (\Delta^3 y_{-1})$ $-2 (\Delta^3 y_0)$		− 16 Δ ⁵ <i>y</i> _
1200 (x ₁)	$201(y_1)$		$-14 \left(\Delta^2 y_0 \right)$		$4(\Delta^{4}y_{-1})$	
		4 (Δy_1)		$-2(\Delta^3 y_0)$		
1500 (x ₂)	205 (y_2)		$-16 (\Delta^2 y_3)$			
		$-12 (\Delta y_2)$				
$1800(x_3)$	$193(y_3)$					

Let us take $x_0 = 900$ and $h = 300 [x_1 - x_0]$

$$\begin{split} & \left(\frac{dy}{dz}\right)_{x=x_{0}}=\frac{1}{h}\left[\frac{1}{2}(dy_{0}+dy_{-1})-\frac{1}{12}(d^{3}y_{-1}+d^{3}y_{-2})+\frac{1}{60}(d^{3}y_{-2}+d^{3}y_{-3})+\cdots,\right] \\ & \left(\frac{dy}{dz}\right)_{x=x_{0}}=\frac{1}{900}\left[\frac{1}{2}(1\theta+2\theta)-\frac{1}{12}(-\theta-2\theta)+\frac{1}{60}(\partial^{2}-\theta-1\theta)\right] \\ & \left(\frac{dy}{dz}\right)_{x=x_{0}}=0.082\\ & \left(\frac{dy}{dz}\right)_{x=x_{0}}=\frac{1}{900}\left[-\frac{1}{9}(2\theta)-\frac{1}{9}(-\theta-2\theta)\right] \\ & \left(\frac{dy}{dz}\right)_{x=x_{0}}=\frac{1}{900}\left[-\frac{1}{9}(2\theta)-\frac{1}{9}(2\theta)-\frac{1}{9}(-\theta-2\theta)\right] \\ & \left(\frac{dy}{dz}\right)_{x=x_{0}}=\frac{1}{900}\left[-\frac{1}{9}(2\theta)-\frac{1}{9}(-\theta-2\theta)-\frac{1}{900}\left[-\frac{1}{9}(2\theta)-\frac{1}{900}\left[-\frac{1}{900}\left[-\frac{1}{9}(2\theta)-\frac{1}{900}\left[-\frac{1}$$

Since x = 1.50 is on the middle of the data, so we use stirling's formula

Let us take $x_0 = 1.5$ and h = 0.05 $[x_1 - x_0]$ By Stirling's formula, we have

$$\begin{split} \left(\frac{dy}{dx}\right)_{x=x_0} &= \frac{1}{h} \left[\frac{1}{2}(\Delta y_0 + \Delta y_{-1}) - \frac{1}{12}(\Delta^3 y_{-1} + \Delta^3 y_{-2}) + \frac{1}{60}(\Delta^5 y_{-2} + \Delta^5 y_{-3}) + \cdots \dots\right] \\ \left(\frac{dy}{dx}\right)_{x=1.5} &= \frac{1}{0.05} \left[\frac{1}{2}(-0.023 - 0.021) - \frac{1}{12}(-0.001 + 0.001) + \frac{1}{60}(0.003 - 0.003)\right] \\ &= \frac{1}{0.05} \left[-0.022\right] \\ \left(\frac{dy}{dx}\right)_{x=1.5} &= -0.44 \\ \left(\frac{d^2 y}{dx^2}\right)_{x=x_0} &= \frac{1}{h} \left[\Delta^2 y_{-1} + \frac{1}{12}\Delta^4 y_{-2} + \cdots \dots\right] \end{split}$$

Example 3 : Find the First & Second derivatives of the function y at $x = x^{3}$ from the following data.

x:	0.4	0.5	0.6	0.7	N	
y :	1.5836	1.7974	2.0442	2.3275 2.651	1	
Solution			el.	Disponso		
x 0.4 (x_	y 2) 1.5836 ((v)	Δy	$\Delta^2 y$	$\Delta^3 y$	Δ ⁴ y
0.1 (2-	2) 1.5050(
0.5 (x_) 1.7974 ((y_{-1})	2138 (Δy_{-2}) 2468 (Δy_{-1})	$0.0330 \ (\Delta^2 y_{-2})$	0.0035 (Δ ³ y ₋₂)	
0.5 (x_{-})		(y_{-1}) 0.3		0.0330 ($\Delta^2 y_{-2}$) 0.0365 ($\Delta^2 y_{-1}$) 0.0403 ($\Delta^2 y_0$)	0.0035 (Δ ³ y ₋₂) 0.0038 (Δ ³ y ₋₁)	0.0003 (Δ ⁴ y ₋₂)

Let us take $x_0 = 0.6$ and h = 0.1 $[x_1 - x_0]$

$$\begin{aligned} \left(\frac{dy}{dx}\right)_{x=x_{0}} &= \frac{1}{h} \left[\frac{1}{2}(\Delta y_{0} + \Delta y_{-1}) - \frac{1}{12}(\Delta^{3}y_{-1} + \Delta^{3}y_{-2}) + \frac{1}{60}(\Delta^{5}y_{-2} + \Delta^{5}y_{-3}) + \cdots \dots\right] \\ &\left(\frac{dy}{dx}\right)_{x=0.6} = \frac{1}{0.1} \left[\frac{1}{2}(0.2833 + 0.2468) - \frac{1}{12}(0.0038 + 0.0035)\right] \\ &= \frac{1}{0.1} \left[0.26505 - 0.00061\right] \\ &\left(\frac{dy}{dx}\right)_{x=0.6} = 2.6444 \\ &\left(\frac{d^{2}y}{dx^{2}}\right)_{x=x_{0}} = \frac{1}{h} \left[\Delta^{2}y_{-1} + \frac{1}{12}\Delta^{4}y_{-2} + \cdots \dots\right] \\ &\left(\frac{d^{2}y}{dx^{2}}\right)_{x=0.6} = \frac{1}{0.01^{2}} \left[0.0365 - \frac{1}{12}(0.0003)\right] \\ &= \frac{1}{0.01} \left[0.0365 - 0.000025\right] = \frac{1}{0.036} \left[0.036475\right] \\ &\left(\frac{d^{2}y}{dx^{2}}\right)_{x=0.6} = 3.6475 \end{aligned}$$
Bessel's Formula 1. Find the value of $f'(0.04)$ using Bessel's formula, given the following data
 $\frac{x \quad y \quad \Delta y \quad \Delta^{2}y \quad \Delta^{3}y \quad \Delta^{4}y} \end{aligned}$

0.01 (x ₋₃)	0.1023 (y ₋₃)	0.0004 (4)			
0.02 (x_{-2})	0.10474 (y ₋₂)	0.0024 (∆y ₋₃)	$0 \ (\Delta^2 y_{-3})$		
		$0.0024 (\Delta y_{-2})$	0.0001 ($\Delta^2 y_{-2}$)	$0.0001 (\Delta^3 y_{-3})$	-0.0001 (Δ ⁴ <i>y</i> ₋₃)
0.03 (x ₋₁)	0.1071 (y ₋₁)	0.0025 (Δy_{-1})		$0(\Delta^{3}y_{-2})$	
0.04 (x_0)	0.10965 (y ₀)	0.0026 (Δy ₀)	0.0001 ($\Delta^2 y_{-1}$)	$0.0001 (\Delta^3 y_{-1})$	$-0.0001 (\Delta^4 y_{-2})$
0.05 (x_1)	0.1122 (y ₁)		$0 \ \left(\Delta^2 \mathbf{y}_0 \right)$		
$0.06(x_2)$	0.1148 (y ₂)	0.0026 (Δy ₁)			

Let us take
$$x_0 = 0.04$$
, Let $p = \frac{x - x_0}{h}$
Since By Bessel's Formula, we have
 $\left(\frac{dy}{dx}\right) = \frac{1}{h} \left[\Delta y_0 + \frac{2p - 1}{4} (\Delta^2 y_{-1} + \Delta^2 y_0) + \frac{3p^2 - 3p + \frac{1}{2}}{6} \Delta^3 y_{-1} \right]$
At $x = x_0$, $p = 0$
 $\left(\frac{dy}{dx}\right)_{x=x_0} = \frac{1}{h} \left[\Delta y_0 - \frac{1}{4} (\Delta^2 y_{-1} + \Delta^2 y_0) + \frac{1}{12} \Delta^3 y_{-1} + \frac{1}{24} (\Delta^3 y_{-2} + \Delta^4 y_{-1}) \right]$
 $\left(\frac{dy}{dx}\right)_{x=0.04} = \frac{1}{0.04} \left[0.0026 - \frac{1}{4} (0.0001 + 0) + \frac{1}{12} (0.0001) + \frac{1}{24} (0 + \Delta^4 y_{-1}) \right]$
 $\left(\frac{dy}{dx}\right)_{x=0.04} = 0.25625$

TWO POINT GAUSSIAN QUADRATURE

1. Apply Gauss two point formula to evaluate $\int_{-1}^{+1} \frac{1}{1+x^2} dx$.

Solution : Given interval is -1 to +1, so we apply gauss two point formula

$$\int_{-1}^{+1} f(x)dx = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(+\frac{1}{\sqrt{3}}\right)$$

Here $f(x) = \frac{1}{1+x^2}$
 $f\left(\frac{-1}{\sqrt{3}}\right) = \frac{1}{1+\frac{1}{3}} = \frac{1}{\left(\frac{4}{3}\right)} = \frac{3}{4}$ and $f\left(\frac{1}{\sqrt{3}}\right) = \frac{1}{1+\frac{1}{3}} = \frac{1}{\left(\frac{4}{3}\right)} = \frac{3}{4}$

$$\therefore \int_{-1}^{+1} \frac{1}{1+x^2} \, dx = \frac{3}{4} + \frac{3}{4} = \frac{3}{2} = 1.5$$

By actual integration :

$$\int_{-1}^{+1} \frac{1}{1+x^2} dx = [\tan^{-1}x]_{-1}^{+1} = \tan^{-1}(1) - \tan^{-1}(-1)$$
$$= \tan^{-1}(1) + \tan^{-1}(1) = 2 \tan^{-1}(1)$$
$$\int_{-1}^{1} \frac{1}{1+x^2} dx = 2 * \frac{\pi}{4} = \frac{\pi}{2} = 1.5708$$

The error of two point formula is 1.5708 - 1.5 = 0.0708

2. Apply Gauss two point formula to evaluate $\int_0^{+1} \frac{1}{1+x^2} dx$. Solution :

Given interval is not -1 to +1, so we make this as -1 to +12 +1 +1

$$\int_{0}^{1} \frac{1}{1+x^{2}} dx = \frac{1}{2} \int_{-1}^{1} \frac{1}{1+x^{2}} dx$$

 $\int_{0}^{+1} \frac{1}{1+x^2} dx = \frac{1}{2}(1.5) = 0.75 \text{ Since by above example.}$ 3. Apply Gauss two point formula to evaluate (1). $\int_{-1}^{+1} (3x^2 + 5x^4) dx$.

(2).
$$\int_0^{+1} (3x^2 + 5x^4) dx$$
.

Solution :

ution : (1) Given interval is -1 to +1 so we apply gauss two point formula

$$\int_{-1}^{1} f(x)dx = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(+\frac{1}{\sqrt{3}}\right)$$

Here $f(x) = 3x^2 + 5x^4$

$$f\left(\frac{-1}{\sqrt{3}}\right) = 3\left(\frac{-1}{\sqrt{3}}\right)^2 + 5\left(\frac{-1}{\sqrt{3}}\right)^4 = 3\left(\frac{1}{3}\right) + 5\left(\frac{1}{9}\right) = 1 + \frac{5}{9} = \frac{14}{9} = 1.556$$
$$f\left(\frac{1}{\sqrt{3}}\right) = 3\left(\frac{1}{\sqrt{3}}\right)^2 + 5\left(\frac{1}{\sqrt{3}}\right)^4 = 3\left(\frac{1}{3}\right) + 5\left(\frac{1}{9}\right) = 1 + \frac{5}{9} = \frac{14}{9} = 1.556$$
$$\therefore \int_{-1}^{+1} (3x^2 + 5x^4) \, dx = 1.556 + 1.556 = 3.112$$

(2) Given interval is not -1 to +1, so we make it as -1 to +1

$$\int_{0}^{+1} (3x^{2} + 5x^{4}) dx = \frac{1}{2} \int_{-1}^{+1} (3x^{2} + 5x^{4}) dx$$
$$\int_{0}^{+1} \frac{1}{1 + x^{2}} dx = \frac{1}{2} (3.112) = 1.556 \quad \text{Since by (1)}.$$

For general range (a, b)

$$\int_{a}^{b} f(x) \, dx = \int_{-1}^{+1} f\left[\left(\frac{b-a}{2}\right)z + \left(\frac{a+b}{2}\right)\right]\left(\frac{b-a}{2}\right) \, dz \, .$$
$$\int_{a}^{b} f(x) \, dx = \left(\frac{b-a}{2}\right) \int_{-1}^{+1} \phi(z) \, dz \, .$$

Now $\int_{-1}^{+1} \phi(z) dz$ can be evaluated by using two point (or) three point Gaussian quadrature formula.

4. Evaluate $\int_{-2}^{+2} e^{-\frac{x}{2}} dx$ by gauss two point formula.

The range is not (-1,+1) so we use formula to make as $(-1,\pm1)$ MMON Here a = -2 & b = +2b = a $x = \frac{b-a}{2}z + \frac{b+a}{2} \implies x \Rightarrow \frac{2+2}{2}z + \frac{2-2}{2}$ $x = 2z \implies z \Rightarrow \frac{x}{2} \Rightarrow dx = 2 dz$ $\therefore \int_{-2}^{+2} e^{-\frac{x}{2}} dx = 2 \int_{-1}^{+1} e^{-\frac{2x}{2}} 2 dz$ $\therefore \int_{-2}^{+2} e^{-\frac{x}{2}} dx = 2 \int_{-1}^{+1} e^{-x} dz = 2 \left[f\left(-\frac{1}{\sqrt{3}}\right) + f\left(+\frac{1}{\sqrt{3}}\right) \right]$ Here $f(z) = e^{-z}$ $f\left(\frac{-1}{\sqrt{3}}\right) = e^{\frac{1}{\sqrt{3}}} = 1.7813$ and $f\left(\frac{1}{\sqrt{3}}\right) = e^{\frac{-1}{\sqrt{3}}} = 0.5614$ $\therefore \int_{-2}^{+2} e^{-\frac{x}{2}} dx = 2 \int_{-1}^{+1} e^{-x} dx = 2 \left[1.7813 + 0.5614 \right] = 4.6854$ $\int^{+2} e^{-\frac{x}{2}} dx = 4.6854$

5. Evaluate $\int_{0}^{\frac{\pi}{2}} \sin t \, dt$ by gauss two point formula.

Solution :

The range is not (-1, +1) so we use formula to make as (-1, +1). 17

Here
$$a = 0$$
 & $b = \frac{\pi}{2}$
 $t = \frac{b - a}{2} z + \frac{b + a}{2} \implies t = \frac{\pi}{2} - 0 z + \frac{\pi}{2} + 0 \implies t = \frac{\pi}{4} z + \frac{\pi}{4}$
 $t = \frac{\pi}{4} (z + 1) \implies dt = \frac{\pi}{4} dz$
 $\therefore \int_{0}^{\frac{\pi}{2}} \sin t \, dt = \int_{-1}^{+1} \sin\left(\frac{\pi}{4} (z + 1)\right) dx = \frac{\pi}{4} \left[f\left(-\frac{1}{\sqrt{3}}\right) + f\left(+\frac{1}{\sqrt{3}}\right)\right]$
Here $f(z) = \sin\left(\frac{\pi}{4} (z + 1)\right)$
 $f\left(\frac{-1}{\sqrt{3}}\right) = \sin\left(\frac{\pi}{4} (\left(\frac{1}{\sqrt{3}}\right) + 1\right)\right) = 0.3259$
 $f\left(\frac{1}{\sqrt{3}}\right) = \sin\left(\frac{\pi}{4} (\left(\frac{1}{\sqrt{3}}\right) + 1\right)\right) = 0.3259$
 $f\left(\frac{1}{\sqrt{3}}\right) = \sin\left(\frac{\pi}{4} (\left(\frac{1}{\sqrt{3}}\right) + 1\right)\right) = 0.3259$
 $f\left(\frac{1}{\sqrt{3}}\right) = \sin\left(\frac{\pi}{4} (\left(\frac{1}{\sqrt{3}}\right) + 1\right)\right) = 0.3259 + 0.9454$
 $\therefore \int_{0}^{\frac{\pi}{2}} \sin t \, dt = \int_{-1}^{+1} \sin\left(\frac{\pi}{4} (z + 1)\right) \left(\frac{\pi}{4}\right) dz = \frac{\pi}{4} [0.3259 + 0.9454]$
 $\therefore \int_{0}^{\frac{\pi}{2}} \sin t \, dt = (-\cos t)_{0}^{\frac{\pi}{2}} = -[\cos t]_{0}^{\frac{\pi}{2}} = -[0 - 1] = 1$
 $\therefore The error is \ 0.00152$
6. Using Gaussian Quadrature find the value of $\int_{0}^{\frac{\pi}{2}} \log(1 + x) \, dx$.
Solution
The range is not $(-1, +1)$ so we use formula to make as $(-1, +1)$.
Here $a = 0$ & $b = \frac{\pi}{2}$
 $x = \frac{b - a}{2} x + \frac{b + a}{2} \implies x = \frac{\pi}{2} - \frac{a}{2} x + \frac{\pi}{2} + \frac{a}{2} \implies x = \frac{\pi}{4} x + \frac{\pi}{4}$
 $x = \frac{\pi}{4} (z + 1) \implies dx = \frac{\pi}{4} dz$

$$\therefore \int_{0}^{\frac{\pi}{2}} \log(1+x) \, dx = \int_{-1}^{+1} \log\left(1 + \frac{\pi}{4} (z+1)\right) \left(\frac{\pi}{4}\right) \, dz$$

$$\therefore \int_{0}^{\frac{\pi}{2}} \log(1+x) \, dx = \frac{\pi}{4} \int_{-1}^{+1} \log\left(1 + \frac{\pi}{4} (z+1)\right) \, dz = \frac{\pi}{4} \left[f\left(-\frac{1}{\sqrt{3}}\right) + f\left(+\frac{1}{\sqrt{3}}\right)\right] \dots (1)$$

$$Here \ f(z) = \log\left(1 + \frac{\pi}{4} (z+1)\right)$$

$$f\left(\frac{-1}{\sqrt{3}}\right) = \log\left(1 + \frac{\pi}{4} \left[\frac{-1}{\sqrt{3}} + 1\right]\right) = 0.2866$$

$$f\left(\frac{1}{\sqrt{3}}\right) = \log\left(1 + \frac{\pi}{4} \left[\frac{+1}{\sqrt{3}} + 1\right]\right) = 0.8060$$

$$\therefore \ (1) \Rightarrow \int_{0}^{\frac{\pi}{2}} \log(1+x) \, dx = \frac{\pi}{4} \left[f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)\right]$$

$$\int_{0}^{\frac{\pi}{2}} \log(1+x) \, dx = \frac{\pi}{4} \left[0.2866 + 0.8060\right] = 0.858$$

$$two - point Gaussian quadrature formula evaluate \int_{0}^{1} \frac{1}{1+x} \, dx$$

Solution :

7. Using

(i). $\int_{0}^{1} \frac{1}{1+x} dx$ {Given range is not exact form: The range is not (-1,+1) so we use formula to make as (-1,+1). Here a = 0 & b = 1 $x = \frac{b-a}{2}z + \frac{b+a}{2} \implies x = \frac{1-0}{2}z + \frac{1+0}{2}$ $x = \frac{z}{2} + \frac{1}{2} \implies \frac{z+1}{2} \implies dx = \frac{1}{2} dz$ $\therefore \int_{0}^{1} \frac{1}{1+x} dx = \int_{-1}^{+1} \frac{1}{1+(\frac{z+1}{2})} (\frac{1}{2}) dz = (\frac{1}{2}) \int_{-1}^{+1} \frac{1}{(\frac{2+z+1}{2})} dz$ $= (\frac{1}{2}) \int_{-1}^{+1} \frac{1}{(\frac{z+3}{2})} dz = \int_{-1}^{+1} \frac{1}{z+3} dz$ $\therefore \int_{0}^{1} \frac{1}{1+x} dx = \int_{-1}^{+1} \frac{1}{z+3} dz$ The integral is now in correct form $[\int_{-1}^{+1} \frac{1}{z+3} dz]$:

Let
$$f(z) = \frac{1}{z+3}$$
.
And $f\left(-\frac{1}{\sqrt{3}}\right) = f(-0.57735) = \frac{1}{-0.57735+3} = 0.41277$
 $f\left(+\frac{1}{\sqrt{3}}\right) = f(+0.57735) = \frac{1}{+0.57735+3} = 0.27954$
 $We have \int_{-1}^{+1} f(z)dz = \left[f\left(-\frac{1}{\sqrt{3}}\right) + f\left(+\frac{1}{\sqrt{3}}\right)\right]$
 $\therefore \int_{-1}^{+1} \frac{1}{2z+3} dz = 0.41277 + 0.27954 = 0.6923$
 $\therefore \int_{0}^{1} \frac{1}{1+x} dx = 0.6923$

THREE POINT GAUSSIAN QUADRATURE

$$\int_{-1}^{+1} f(x)dx = \frac{5}{9} \left[f\left(-\sqrt{\frac{3}{5}}\right) + f\left(+\sqrt{\frac{3}{5}}\right) + \frac{9}{9} f(0) \right]$$

1. Using Gaussian three – point formula evaluate (i). $\int_{-1}^{+1} [3 x^2 + 5x^4] dx$ (ii). $\int_{0}^{+1} [3 x^2 + 5x^4] dx$. Also compare with exact result. Jution : Solution :

(i).
$$\int_{-1}^{+1} [3 x^2 + 5x^4] dx$$
 {Given range is exact form?
Let $f(x) = 3 x^2 + 5x^4$..
Now $f(0) = 3(0) + 5(0) = 0$
And $f\left(-\sqrt{\frac{3}{5}}\right) = 3\left(-\sqrt{\frac{3}{5}}\right)^2 + 5\left(-\sqrt{\frac{3}{5}}\right)^4 = 3\left(\frac{3}{5}\right) + 5\left(\frac{3}{5}\right)^2 = \frac{9}{5} + \frac{9}{5} = \frac{18}{5}$
 $f\left(+\sqrt{\frac{3}{5}}\right) = 3\left(+\sqrt{\frac{3}{5}}\right)^2 + 5\left(+\sqrt{\frac{3}{5}}\right)^4 = 3\left(\frac{3}{5}\right) + 5\left(\frac{3}{5}\right)^2 = \frac{9}{5} + \frac{9}{5} = \frac{18}{5}$
We have $\int_{-1}^{+1} f(x) dx = \frac{5}{9} \left[f\left(-\sqrt{\frac{3}{5}}\right) + f\left(+\sqrt{\frac{3}{5}}\right)\right] + \frac{8}{9} f(0)$
 $\therefore \int_{-1}^{+1} [3 x^2 + 5x^4] dx = \frac{5}{9} \left[\frac{18}{5} + \frac{18}{5}\right] + \frac{8}{9} (0) = \frac{5}{9} \left[\frac{36}{5}\right] + 0$
 $\therefore \int_{-1}^{+1} [3 x^2 + 5x^4] dx = 4$

Actual Integral:

$$\int_{-1}^{+1} [3x^2 + 5x^4] dx = 2 \int_{0}^{+1} [3x^2 + 5x^4] dx = 2 \left[3\frac{x^3}{3} + 5\frac{x^5}{5} \right]_{0}^{1}$$
$$= 2[(1+1) - (0)]_{0}^{1}$$
$$\int_{-1}^{+1} [3x^2 + 5x^4] dx = 4 \dots (2)$$

(ii). $\int_0^{+1} [3x^2 + 5x^4] dx$ {Given range is not exact form}

$$\therefore \int_{0}^{+1} [3x^{2} + 5x^{4}] dx = \left(\frac{1}{2}\right) \int_{-1}^{+1} [3x^{2} + 5x^{4}] dx$$

$$\therefore \int_{0}^{+1} [3x^{2} + 5x^{4}] dx = \left(\frac{1}{2}\right) (4) = 2 \quad \text{Since by (1)}$$

2. Using three – point Gaussian quadrature formula evaluate

(i). $\int_{-1}^{+1} \frac{1}{1+x^2} dx$ (ii). $\int_{0}^{+1} \frac{1}{1+t^2} dt$. Also compare with exact result. Solution :

(i).
$$\int_{-1}^{+1} \frac{1}{1+x^2} dx$$
 {Given range is exact form}
Let $f(x) = \frac{1}{1+x^2}$. Now $f(0) = \frac{1}{1+0} = 1$
And $f\left(-\sqrt{\frac{3}{5}}\right) = \frac{1}{1+1} + \left(-\sqrt{\frac{3}{5}}\right)^2 = \frac{1}{1+1} + \left(1+\frac{3}{5}\right)^2 = \frac{1}{1+1} + \frac{3}{5} = \frac{1}{1+1} + \frac{3}{5} = \frac{1}{5} = \frac{5}{8}$
 $f\left(+\sqrt{\frac{3}{5}}\right) = \frac{1}{1+1} + \left(+\sqrt{\frac{3}{5}}\right)^2 = \frac{1}{1+1} + \frac{3}{5} = \frac{1}{5} = \frac{1}{5}$

Actual Integral:

$$\int_{-1}^{+1} \frac{1}{1+x^2} dx = 2 \int_{0}^{+1} \frac{1}{1+x^2} dx = 2 [\tan^{-1} x]_{0}^{1}$$

$$= 2[\tan^{-1}0 - \tan^{-1}1]_0^1 = 2\left[\frac{\pi}{4} - 0\right] = \frac{\pi}{2}$$
$$\int_{-1}^{+1} \frac{1}{1 + x^2} dx = 1.5708 \qquad \dots (2)$$

(ii). $\int_0^{+1} \frac{1}{1+t^2} dt$ {Given range is not exact form}

$$\therefore \int_{0}^{+1} \frac{1}{1+t^{2}} dt = \left(\frac{1}{2}\right) \int_{-1}^{+1} \frac{1}{1+t^{2}} dt$$
$$\therefore \int_{0}^{+1} \frac{1}{1+t^{2}} dt = \left(\frac{1}{2}\right) [1.5833] = 0.79165$$

3. Evaluate $\int_{-1}^{+1} \frac{x^2}{1+x^4} dx$ by using three point Gaussian formula. Solution :

(i).
$$\int_{-1}^{+1} \frac{x^2}{1+x^4} dx$$
 {Given range is exact form}
Let $f(x) = \frac{x^2}{1+x^4}$. Now $f(0) = \frac{0}{1+0} = 0$
And $f\left(-\sqrt{\frac{3}{5}}\right) = f(-0.7746) = \frac{(-0.7746)^2}{1+(-0.7746)^4} = \frac{0.19464}{1.3600} = 0.4412$
 $f\left(+\sqrt{\frac{3}{5}}\right) = f(+0.7746) = \frac{(+0.7746)^2}{1+(+0.7746)^4} = \frac{0.19464}{1.3600} = 0.4412$
We have $\int_{-1}^{+1} f(x) dx = \frac{5}{9} [0.4412 + 0.4412] + \frac{8}{9} (0)$

4. Using three – point Gaussian quadrature formula evaluate $\int_{1}^{5} \frac{1}{x} dx$

Solution :

(i). $\int_{1}^{5} \frac{1}{x} dx$ {Given range is exact form}

The range is not (-1, +1) so we use formula to make as (-1, +1). Here a = 1 & b = 5

$$x = \frac{b-a}{2}z + \frac{b+a}{2} \implies x = \frac{5-1}{2}z + \frac{5+1}{2}$$
$$x = 2z+3 \implies dx = 2 dz$$
$$\therefore \int_{1}^{5} \frac{1}{x} dx = \int_{-1}^{+1} \frac{1}{2z+3} 2 dz = 2 \int_{-1}^{+1} \frac{1}{2z+3} dz$$

Let
$$f(z) = \frac{z^2 + 4z + 4}{1 + [z + 2]^4} = \frac{(z + 2)^2}{1 + [z + 2]^4}$$

Now $f(0) = \frac{(0 + 2)^2}{1 + [0 + 2]^4} = \frac{0 + 4}{17} = \frac{4}{17}$
And $f\left(-\sqrt{\frac{5}{5}}\right) = f(-0.7746) = \frac{((-0.7746) + 2)^2}{1 + ((-0.7746) + 2]^4} = \frac{1.50161}{3.2548} = 0.4614$
 $f\left(+\sqrt{\frac{3}{5}}\right) = f(+0.7746) = \frac{((+0.7746) + 2)^2}{1 + ((+0.7746) + 2]^4} = \frac{7.69839}{60.2652} = 0.12774$
 $We have \int_{-1}^{+1} f(z) dz = \frac{5}{9} \left[f\left(-\sqrt{\frac{3}{5}}\right) + f\left(+\sqrt{\frac{3}{5}}\right) \right] + \frac{8}{9} f(0)$
 $\therefore \int_{-1}^{+1} f(z) dz = \frac{5}{9} \left[0.4614 + 0.12774 \right] + \frac{8}{9} \left[\frac{4}{17} \right]$
 $\int_{-1}^{+1} f(z) dz = \int_{0}^{2} \frac{x^2 + 2x + 1}{1 + (x + 1)^4} dx = 0.8365$
6. Evaluate by using three – point Gaussian quadrature formula for $\int_{0.2}^{1.5} e^{-x^2} dx$
Solution :
 $\int_{0.2}^{1.5} e^{-x^2} dx$ {Given range is not exact form}
The range is not (-1, +1) so we use formula to make as (-1, +1).

Here a = 0.2 & b = 1.5 $x = \frac{b-a}{2}z + \frac{b+a}{2}$ $x = \frac{1.5-0.2}{2}z + \frac{1.5+0.2}{2} = 0.65z + 0.85$ $x = 0.65z + 0.85 \Rightarrow dx = 0.65 dz$ $\therefore \int_{0.2}^{1.5} e^{-x^2} dx = \int_{-1}^{+1} e^{-(0.65z+0.85)^2} (0.65) dz$ $\therefore \int_{0.2}^{1.5} e^{-x^2} dx = 0.65 \int_{-1}^{+1} e^{-(0.65z+0.85)^2} dz \dots (1)$ The integral is now in correct form $\left[0.65 \int_{-1}^{+1} e^{-(0.65z+0.85)^2} dz \right]$:

 $f(0) = e^{-(0.65[0]+0.85)^2} = e^{-(0.85)^2} = 0.4855$

Let $f(z) = e^{-(0.65 z + 0.85)^2}$.

Now

And
$$f\left(-\sqrt{\frac{3}{5}}\right) = f(-0.7746) = e^{-(0.65[-0.7746]+0.85)^2} = 0.8869$$

 $f\left(+\sqrt{\frac{5}{5}}\right) = f(+0.7746) = e^{-(0.65[+0.7746]+0.85)^2} = 0.1601$
 $We have \int_{-1}^{+1} f(z)dz = \frac{5}{9} \left[f\left(-\sqrt{\frac{3}{5}}\right) + f\left(+\sqrt{\frac{3}{5}}\right)\right] + \frac{8}{9} f(0)$
 $= \frac{5}{9} \left[0.8869 + 0.1601\right] + \frac{8}{9} \left[0.4855\right]$
 $= 0.5817 + 0.4316$
 $\int_{-1}^{+1} f(z)dz = 1.0133$
 $\therefore \int_{0.2}^{1.5} e^{-x^2} dx = 0.65 \int_{-1}^{+1} e^{-(0.65z+0.85)^2} dz = 0.65 \left[1.0133\right]$
 $\therefore \int_{0.2}^{1.5} e^{-x^2} dx = 0.65865$
NUMERICAL INTEGRATION BY TRAPEZOIDAL RULE & SIMPSON'S RULE
1. Using Trapezoidal rule, evaluate $\int_{-1}^{+1} \frac{dx}{1+x^2}$ taking 8 intervals.
Solution : Here $y(x) = \frac{1}{1+x^2}$,
Since $h = Range/n$.

Range = b - a = 1 - (-1) = 2. So we divide the range into 8 equal intervals with $h = \frac{2}{8} = 0.25$.

We form a table

<i>x</i> :	-1	-1 + 0.25 = -0.75	-0.75 + 0.25 = -0.5	-0.5 + 0.25 = -0.25	-0.25 + 0.25 = 0	0 + 0.25 = 0.25	0.25 + 0.25 = 0.5	0.5 + 0.25 = 0.75	+1
<i>y</i> :	0.5 (y ₀)	0.64 (y ₁)	0.8 (y ₂)	0.9412 (y ₃	1 (y ₄)	0.9412 (y ₅	0.8 (y ₆)	0.64 (y ₇)	0.5 (y ₈)

Trapezoidal rule

$$\int_{-1}^{+1} \frac{1}{1+x^2} \, dx = \frac{h}{2} \left[\text{sum of first \& last ordinates} + 2(\text{sum of remailning ordinates}) \right]$$

$$\int_{-1}^{+1} \frac{1}{1+x^2} dx = \frac{h}{2} \left[(y_0 + y_8) + 2(y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7) \right]$$

= $\frac{0.25}{2} \left[(0.5 + 0.5) + 2(0.64 + 0.8 + 0.9412 + 1 + 0.9412 + 0.8 + 0.64) \right]$
= 2.3812 [12.5248]
 $\int_{-1}^{+1} \frac{1}{1+x^2} dx = 1.5656$

2. Evaluate $\int_0^1 \frac{dx}{1+x^2}$ with $h = \frac{1}{6}$ by trapezoidal rule.

Solution :

Here $y(x) = \frac{1}{1+x^2}$. Range = b - a = 1 - 0 = 1

So we divide 6 equal intervals with $h = \frac{Range}{n} = \frac{1}{6} = 0.167$.

We form a table

<i>x</i> :	0	0.167	0.334	0.501	0.668	0.835	+1
y :	1	0.9728	0.8996	0.7993	0.6915	0.5892	0.5

N

Trapezoidal rule

$$\int_{0}^{+1} \frac{1}{1+x^{2}} dx = \frac{h}{2} \left[(y_{0} + y_{5}) + 2(y_{1} + y_{2} + y_{3} + y_{4}) \right]$$

$$\int_{0}^{+1} \frac{1}{1+x^{2}} dx = \frac{0.167}{2} \left[(1+0.5) + 2(0.9728 + 0.8996 + 0.7993 + 0.6915 + 0.5892) \right]$$

$$= \frac{0.167}{2} \left[1.5 + 7.9048 \right]$$

$$\int_{0}^{+1} \frac{1}{1+x^{2}} dx = 0.7853.$$

3. Evaluate $\int_{1}^{2} \frac{dx}{1+x^{2}}$ using trapezoidal rule with two sub intervals.

Solution : Here $y(x) = \frac{1}{1+x^2}$

Range = b - a = 2 - 1 = 1

So we divide 2 equal intervals with $h = \frac{1}{2} = 0.5$.

We form a table

<i>x</i> :	0	0.5	1
y .	1	0.0	0.5

Trapezoidal rule

$$\int_{1}^{+2} \frac{1}{1+x^{2}} dx = \frac{h}{2} \left[(y_{0} + y_{2}) + 2(y_{1}) \right]$$
$$\int_{1}^{+2} \frac{1}{1+x^{2}} dx = \frac{1}{2} \left[(1+0.5) + 2(0.8) \right]$$
$$\int_{1}^{+2} \frac{1}{1+x^{2}} dx = 0.775.$$

4. Dividing the range into ten equal parts, find the value of $\int_0^{\frac{\pi}{2}} \sin x \, dx$ by (1). Trapezoidal rule

(2). Simpson's rule.

Solution : Here $y(x) = \sin x$. Range $= b - a = \frac{\pi}{2} - 0 = \frac{\pi}{2}$

So we divide 10 equal intervals with $h = \frac{\pi}{2} / \frac{10}{10} = \frac{\pi}{20}$.

We	form	a	table	

<i>x</i> :	0	$\frac{\pi}{20}$	$\frac{2\pi}{20}$	$\frac{3\pi}{20}$	$\frac{4\pi}{20}$	$\frac{5\pi}{20}$	$\frac{6\pi}{20}$	$\frac{7\pi}{20}$	$\frac{8\pi}{20}$	$\frac{9\pi}{20}$	$\frac{10 \pi}{20}$
<i>y</i> :	0	0.1564	0.3090	0.4540	0.5878	0.7071	0.8090	0.8910	0.9511	0.9877	1

N

Trapezoidal rule

$$\int_{0}^{\frac{\pi}{2}} \sin x \, dx = \frac{h}{2} \left[(y_0 + y_{10}) + 2(y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7 + Y_8 + Y_9) \right] \frac{\pi}{2} /_{10}$$

S

$$= \frac{\left(\frac{\pi}{20}\right)}{2} \left[(0+1) + 2(0.1564 + 0.3096 + 0.4540 + 0.5878 + 0.7071 + 0.8090 + 0.8910 + 0.9511 + 0.9877) \right]$$

$$\int_{0}^{\frac{\pi}{2}} \sin x \, dx = \frac{\pi}{40} \left[1 + 2(0.58531) \right] = \frac{\pi}{40} \left[12.7062 \right]$$

$$\int_{0}^{\frac{\pi}{2}} \sin x \, dx = 0.9980 \,.$$

(2). By Simpson's rule :

π

$$\int_{0}^{\overline{2}} \sin x \, dx = \left(\frac{h}{3}\right) \left[(y_0 + y_{10}) + 4(y_1 + y_3 + y_5 + y_7 + y_9) + 2(y_2 + y_4 + y_6 + y_8) \right]$$

 $=\frac{\left(\frac{\pi}{20}\right)}{3}\left[(0+1)+4(0.1564+0.4540+0.7071+0.8910+0.9877)+2(0.3090+0.5878+0.8090+0.9511)\right]$

$$\int_{0}^{\frac{\pi}{2}} \sin x \, dx = \frac{\pi}{60} \left[1 + 4(3.1962) + 2(2.6569) \right]$$
$$= \frac{\pi}{60} \left[1 + 12.7848 + 5.3138 \right] = \frac{\pi}{60} \left[19.0986 \right]$$
$$\int_{0}^{\frac{\pi}{2}} \sin x \, dx = 1.0000$$

5. By Simpson's one – third rule evaluate $\int_0^1 x e^x dx$ taking 4 intervals. Compare your result with actual integral.

Solution :

Here $y(x) = x e^{x}$. Range = b - a = 1 - 0 = 1

So we divide 4 equal intervals with $h = \frac{1}{4} = 0.25$.

We form a table

$\begin{array}{c c} x : & 0 \\ \hline y = x e^x : & 0 \\ \hline \end{array}$ Simpsons 1/3 rule $\begin{array}{c} +1 \\ \int \\ 0 \\ 0 \\ \end{array} x e^x dx = \\ = \frac{0}{2} \\ \end{array}$				+1 00N
Simpsons 1/3 rule $\int_{0}^{+1} x e^{x} dx =$	0.25	0.50	0.75	+1
$\int_{0}^{+1} x e^{x} dx =$	0.321	0.824	1.588	2.718
$\int_{0}^{+1} x e^{x} dx =$ $= \frac{0}{2}$			0	de la
$\int_{0}^{1} x e^{-\alpha x} dx = \frac{0}{2}$	$\frac{h}{h}$	$\perp 2(n) \perp A(n)$	u + v)] 🔿	
$=\frac{0}{3}$	$\frac{1}{3} \left[(y_0 + y_4) \right]$	$+ 2(y_2) + 4($	y1 + y3)	
+1	$\frac{25}{3}$ [(0 + 2.71)	(3) + 2(0.824)	+4(0.321 +	- 1.588)]
+1	}		0	
ĺ	0.25	3.0005		
$\int_{0}^{\infty} x e^{x} dx =$	3 [12.002]	10-=	1.	
0		'J'		

Actual integral :

$$\int_{0}^{+1} x e^{x} dx = [x e^{x}]_{0}^{1} - \int_{0}^{+1} 1 \cdot e^{x} dx$$
$$= [e - 0] - [e^{x}]_{0}^{1} = e - [e - 1] = 1$$
$$\int_{0}^{+1} x e^{x} dx = 1.$$

6. Calculate $\int_{0.5}^{0.7} e^{-x} \sqrt{x} \, dx$ taking 5 ordinates by Simpson's 1/3 rule. Solution :

Here $y(x) = e^{-x} \sqrt{x}$. Range = b - a = 0.7 - 0.5 = 0.2So we divide 5 equal intervals with $h = \frac{0.2}{4} = 0.05$.

We form a table

<i>x</i> :	0.5	0.55	0.60	0.65	0.7
$y = x e^x$:	0.4289	0.4279	0.4251	0.4209	0.4155

Simpsons 1/3 rule

$$\int_{0}^{+1} f(x)dx = \frac{h}{3} \left[(y_0 + y_4) + 2(y_2) + 4(y_1 + y_3) \right]$$

$$\int_{0.5}^{0.7} e^{-x}\sqrt{x} \, dx = \frac{0.05}{3} \left[(0.4289 + 0.4155) + 2(0.4251) + 4(0.4279 + 0.4209) \right]$$

$$= \frac{0.05}{3} \left[5.0898 \right] = \frac{0.25449}{3}$$

$$\int_{0.5}^{0.7} e^{-x}\sqrt{x} \, dx = 0.08483.$$

7. By dividing the range into ten equal parts, evaluate $\int_0^{\pi} \sin x \, dx$ by Trapezoidal rule and Simson's rule. Verify your answer with actual integration.

Here
$$y(x) = \sin x$$
. Range $= b - a = \pi - 0 =$

answe	r with a	ictual inte	gration.				~	Th.			
Solutio	n :						0	5			
ر Here	y(x) =	$\sin x$.	Range =	b - a =	$\pi - 0 = $	π	N				
	divide d m a tab	10 equal i ble	ntervals	with $h =$	π <u>10</u> .	jik	sny.				
<i>x</i> :	0	$\frac{\pi}{10}$	$\frac{2 \pi}{10}$	$\frac{3\pi}{10}$	$\frac{4\pi}{10}$	$\frac{5\pi}{10}$	$\frac{6\pi}{10}$	$\frac{7\pi}{10}$	$\frac{8\pi}{10}$	$\frac{9\pi}{10}$	π
y :	0	0.3090	0.5878	0,8090	0.9511	1.0	0.9511	0.8090	0,5878	0.3090	0

Trapezoidal rule

$$\int_{0}^{\pi} \sin x \, dx = \frac{h}{2} \left[(y_0 + y_{10}) + 2(y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7 + Y_8 + Y_9) \right]$$
$$= \frac{\left(\frac{\pi}{10}\right)}{2} \left[(0+0) + 2(0.3090 + 0.5878 + 0.8090 + 0.9511 + 1.0 + 0.9511 + 0.8090 + 0.5878 + 0.3090) \right]$$
$$= \frac{\pi}{20} \left[12.6276 \right]$$
$$\int_{0}^{\pi} \sin x \, dx = 1.9843.$$

(2). By Simpson's 1/3 rule :

$$\int \sin x \, dx = \left(\frac{h}{3}\right) \left[(y_0 + y_{10}) + 4(y_1 + y_3 + y_5 + y_7 + y_9) + 2(y_2 + y_4 + y_6 + y_8) \right]$$

$$=\frac{\left(\frac{\pi}{10}\right)}{3}\left[(0+0)+2(0.5878+0.9511+0.9511+0.5878)+4(0.3090+0.8090+1+0.8090+0.3090)\right]$$
$$=\frac{\pi}{30}\left[19.0996\right]$$
$$\int_{0}^{\pi}\sin x \ dx = 2.0091.$$

By Actual Integration :

$$\int_{0}^{\pi} \sin x \, dx = [-\cos x]_{0}^{\pi} = -[\cos \pi - \cos 0] = -[-1-1] = 2$$

9. Evaluate $\int_0^6 \frac{1}{1+x^2} dx$ by (i). Trapezoidal rule (ii). Simpsons rule. Also verify by actual integration.

Solution :

Here
$$y(x) = \frac{1}{1+x^2}$$
. Range $= b - a = 6 - 0 = 6$
So we divide 6 equal intervals with $h = \frac{6}{6} = 1$.
We form a table
$$\frac{x: 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6}{y = \frac{1}{1+x^2}: 1 \ 0.500 \ 0.200 \ 0.100 \ 0.058824 \ 0.038462 \ 0.27027}$$
Trapezoidal rule
$$\int_{0}^{6} \frac{1}{1+x^2} dx = \frac{h}{2} [(y_0 + y_6) + 2(y_1 + y_2 + y_3 + y_4 + y_5)]$$
$$= \frac{1}{2} [(1 + 0.027027) + 2(0.5 + 0.2 + 0.1 + 0.058824 + 0.038462)]$$
$$= \frac{1}{2} [2.821599]$$
$$\int_{0}^{6} \frac{1}{1+x^2} dx = 1.4107995.$$

(2). By Simpson's 1/3 rule :

$$\int_{0}^{6} \frac{1}{1+x^{2}} dx = \left(\frac{h}{3}\right) \left[(y_{0} + y_{6}) + 2(y_{1} + y_{3} + y_{5}) + 4(y_{2} + y_{4}) \right]$$
$$= \frac{1}{3} \left[(1 + 0.027027) + 2(0.2 + 0.058824) + 4(0.5 + 0.1 + 0.038462) \right]$$
$$= \frac{1}{3} \left[4.098523 \right]$$

$$\int_{0}^{\pi} \sin x \, dx = 1.36617433.$$

(3). By Simpson's 3/8 rule : .

$$\int_{a}^{b} f(x) dx = \frac{3h}{8} \left[(y_0 + y_u) + 3(y_1 + y_2 + y_4 + y_5 + ...) + 2(y_3 + y_6 + ...) \right]$$

$$\int_{0}^{6} \frac{1}{1 + x^2} dx = \frac{3h}{8} \left[(y_0 + y_6) + 3(y_1 + y_2 + y_4 + y_5) + 2(y_3) \right]$$

$$= \frac{3}{8} \left[(1 + 0.027027) + 3(0.5 + 0.2 + 0.058824 + 0.038462) + 2(0.1) \right]$$

$$\int_{0}^{1} \frac{1}{1+x^2} \, dx = 1.357081875.$$

By Actual Integration :

$$\int_{0}^{6} \frac{1}{1+x^2} \, dx = [\tan^{-1} x]_{0}^{6} = \tan^{-1} 6 - \tan^{-1} 0 = 1.40564765$$

10. Evaluate $\int_0^5 \frac{1}{1+x^2} dx$ by Simpsons 1/3 rule. Also find the value of $\log_e 5$. (n=10) Solution : Here $y(x) = \frac{1}{1+x^2}$ Range = b - a = 5 - 0 = 5

Range = b - a = 5 - 0 = 5So we divide 10 equal intervals with $h = \frac{5}{10} = 0.5$. We form a table

<i>x</i> :	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4,0	4.5	5.0
$y = \frac{1}{1 + x^2}$	0.2	0.1429	0.1111	0.0909	0.0769	0.0667	0.0588	0.0526	0.0476	0.0437	0.04

(1). By Simpson's 1/3 rule :

$$\int_{0}^{5} \frac{1}{4x+5} \, dx = 0.4025 \quad \dots (1)$$

By Actual Integration :

$$\int_{0}^{5} \frac{1}{4x+5} \, dx = \left[\log \frac{(4x+5)}{4} \right]_{0}^{5} = \frac{1}{4} \left[\log 25 - \log 5 - 0 \right]$$

$$\int_{0}^{5} \frac{1}{4x+5} \, dx = \frac{1}{4} \left[\log 5 \right] \, \dots \, (2)$$

From (1) & (2), we have

$$\frac{1}{4} [\log 5] = 0.4025 \implies \log 5 = 4(0.4025)$$
$$\log 5 = 1.61$$

Romberg's Method

1. Evaluate
$$\int_0^2 \frac{dx}{x^2+4}$$
 using Romberg's method. Hence obtain an approximation value of π
Solution :

0.125

Here $y(x) = \frac{1}{1+x^2}$. We take $I = \int_0^2 \frac{dx}{x^2+4}$. Range = b - a = 2 - 0 = 2**Case : I** Let us take n = 2. \therefore $h = Range/n = \frac{2}{2} = 1$ Simon We form a table 2 0 1

 $y = \frac{1}{1+x^2}$ Using Trapezoidal rule :

x:

$$I_{1} = \int_{0}^{2} \frac{dx}{x^{2} + 4} = \frac{h}{2} [(y_{0} + y_{2}) + 2(y_{1})] + \frac{1}{2} [(0.25 + 0.125) + 2(0.20)]$$
$$I_{1} = 0.3875.$$

0.20

Case: II Let us take n = 4. \therefore $h = Range/n = \frac{2}{4} = 0.5$.

0.25

We form a table

<i>x</i> :	0	0.5	1.0	1.5	2.0
$y = \frac{1}{1+r^2}$	0.25	0.2353	0.20	0.160	0.125

Using Trapezoidal rule :

$$I_2 = \int_0^2 \frac{dx}{x^2 + 4} = \frac{h}{2} \left[(y_0 + y_4) + 2 (y_1 + y_2 + y_3) \right]$$
$$= \frac{0.5}{2} \left[(0.25 + 0.125) + 2 (0.2353 + 0.2 + 0.16) \right]$$
$$I_2 = 0.3914$$

Case: III Let us take n = 8. $\therefore h = Range/n = 2/8 = 0.25$.

Let us take h = 0.25

We form a table

<i>x</i> :	0	0.25	0.50	0.75	1.0	1.25	1.50	1.75	2.0
$y = \frac{1}{1 + x^2}$	0.25	0.2462	0.2353	0.2192	0.20	0.17 98	0.160	0.1416	0.125

Using Trapezoidal rule :

$$I_{3} = \int_{0}^{2} \frac{dx}{x^{2} + 4} = \frac{h}{2} \left[(y_{0} + y_{3}) + 2 (y_{1} + y_{2} + y_{3} + y_{4} + y_{5} + y_{6} + y_{7}) \right]$$

= $\frac{0.25}{2} \left[(0.25 + 0.125) + 2 (0.2462 + 0.2353 + 0.2192 + 0.20 + 0.1798 + 0.16 + 0.1416) \right]$
= (0.125) [3.1392]

 $I_3 = 0.3924$

By using Romberg's Formula for $I_1 \& I_2$ we have

$$I = I_{2} + \left(\frac{I_{2} - I_{1}}{3}\right)$$

$$I = 0.3914 + \left(\frac{0.3914 - 0.3875}{3}\right)$$

$$I = 0.3927 \qquad \dots (1)$$
erg's Formula for $I_{2} \ll I_{3}$ we have
$$I = I_{3} + \left(\frac{I_{3} - I_{2}}{3}\right)$$

$$I = 0.3924 + \left(\frac{0.3924 - 0.3914}{3}\right)$$

By using Romberg's Formula for $I_2 \ \& \ I_3$ we have

$$I = I_{3} + \left(\frac{I_{3} - I_{2}}{3}\right)$$

$$I = 0.3924 + \left(\frac{0.3924 - 0.3914}{3}\right)$$

$$I = 0.3927$$
Since (1) & (2) are almost equal we can take
$$I = \int_{0}^{2} \frac{dx}{x^{2} + 4} = 0.3927 \dots (3)$$

By Actual integral:

$$\int_{0}^{2} \frac{dx}{x^{2}+4} = \int_{0}^{2} \frac{dx}{x^{2}+2^{2}} = \frac{1}{2} \left[\tan^{-1} \left(\frac{x}{2} \right) \right]_{0}^{2} = \frac{1}{2} \left[\tan^{-1}(1) - \tan^{-1} 0 \right]$$
$$I = \frac{1}{2} \left[\frac{\pi}{4} - 0 \right] = \frac{\pi}{8} \qquad \dots (4)$$
$$\therefore From (3) \& (4), we get \quad \frac{\pi}{8} = 0.3927 \Rightarrow \pi = 8(0.3927)$$

$$\pi = 3.1416 \ (App).$$

2. Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using Romberg's method. Hence obtain an approximation value of π . Solution :

Here $y(x) = \frac{1}{1+x^2}$ and let $I = \int_0^1 \frac{dx}{1+x^2}$ Case: I Let us take n = 2. \therefore $h = Range/n = \frac{1}{2} = 0.5$

We form a table

<i>x</i> :	0	0.5	1
$y = \frac{1}{1 + x^2}$	1	0.8	0.5

Using Trapezoidal rule :

$$l_1 = \int_0^1 \frac{dx}{1+x^2} = \frac{h}{2} \left[(y_0 + y_2) + 2 (y_1) \right]$$
$$= \frac{0.5}{2} \left[(1+0.5) + 2 (1.6) \right]$$
$$l_1 = 0.775$$

	$l_1 = 0.77$	75				1
Case: II Let us	take $n =$	4. ∴ h	= Rang	$e/n = \frac{1}{4} =$	= 0.25	nor
We form a table	5				~	Som
<i>x</i> :	0	0.25	0.50	0.75	1.0	2
$y = \frac{1}{1 + x^2}$	1	0.9412	0.80	0.64	0.50	
Using Trapezoid	lal rule :			a.'.	pns	

$$I_{2} = \int_{0}^{1} \frac{dx}{1+x^{2}} = \frac{h}{2} \left[(y_{0} + y_{4}) + 2(y_{1} + y_{2} + y_{3}) \right]$$
$$= \frac{0.25}{2} \left[(1 + 0.5) + 2(0.9412 + 0.80 + 0.64) \right]$$
$$I_{2} = 0.7828$$

Case : III Let us take n = 8. \therefore $h = Range/n = \frac{1}{8} = 0.125$ We form a table

<i>x</i> :	0	0.125	0.25	0.375	0.50	0.625	0.750	0.875	1.0
$y = \frac{1}{1+x^2}:$	1	0.9846	0.9425	0.8767	0.80	0.7191	0.64	0.5664	0.5

Using Trapezoidal rule :

$$I_{3} = \int_{0}^{1} \frac{dx}{1+x^{2}} = \frac{h}{2} \left[(y_{0} + y_{8}) + 2 (y_{1} + y_{2} + y_{3} + y_{4} + y_{5} + y_{6} + y_{7}) \right]$$

= $\frac{0.125}{2} \left[(1+0.5) + 2 (0.9846 + 0.9425 + 0.8767 + 0.80 + 0.7191 + 0.64 + 0.5664) \right]$
 $I_{3} = \int_{0}^{1} \frac{dx}{1+x^{2}} = (0.125) \left[12.556 \right]$

 $I_3 = 0.78475$

By using Romberg's Formula fir $I_1 \& I_2$ we have

$$I = I_2 + \left(\frac{I_2 - I_1}{3}\right) = 0.7828 + \left(\frac{0.7828 - 0.775}{3}\right)$$

$$I = 0.7854 \qquad \dots (1)$$

By using Romberg's Formula fir $\,I_2\ \&\ I_3\,$ we have

$$I = I_3 + \left(\frac{I_3 - I_2}{3}\right) = 0.78475 + \left(\frac{0.78475 - 0.7828}{3}\right)$$

$$I = 0.7854 \qquad \dots.(2)$$

Since (1) & (2) are almost equal we can take

$$I = \int_{0}^{1} \frac{dx}{1+x^2} = 0.7854 \dots (3)$$

By Actual integral:

$$\int_{0}^{1} \frac{dx}{1+x^{2}} = [\tan^{-1}x]_{0}^{1} = [\tan^{-1}(1) - \tan^{-1}0]$$

$$I = [\frac{\pi}{4} - 0] = \frac{\pi}{4} \qquad \dots (4)$$

 $\therefore From (3) \& (4), we get \quad \frac{\pi}{4} = 0.7854 \implies \pi = 4(0.3927)$ $\pi = 3.1416 \ (App).$ 2. Evaluate $\int_0^1 \frac{dx}{1+x}$ using Romberg's method correct to three decimal places.

Here
$$y(x) = \frac{1}{1+x}$$
 and let $I = \int_0^1 \frac{dx}{1+x}$

Case : I Let us take
$$n = 2$$
. \therefore $h = \frac{Range}{n} = \frac{1}{2} = 0.5$

We form a table

<i>x</i> :	0	0.5	1
$y = \frac{1}{1+x}$	1	0.6666	0.5

Using Trapezoidal rule :

$$I_1 = \int_0^1 \frac{dx}{1+x} = \frac{h}{2} \left[(y_0 + y_2) + 2 (y_1) \right]$$
$$= \frac{0.5}{2} \left[(1+0.5) + 2 (0.6666) \right]$$

$$I_1 = 0.7083$$

Case : II Let us take n = 4. \therefore $h = Range/n = \frac{1}{4} = 0.25$ We form a table

<i>x</i> :	0	0.25	0.50	0.75	1.0
$y = \frac{1}{1+x}$	1	0.8	0.6666	0.5714	0.5

Using Trapezoidal rule :

$$I_2 = \int_0^1 \frac{dx}{1+x} = \frac{h}{2} \left[(y_0 + y_4) + 2 (y_1 + y_2 + y_3) \right]$$
$$= \frac{0.25}{2} \left[(1+0.5) + 2 (0.8 + 0.66666 + 0.5714) \right]$$

$$I_2 = 0.6970$$

Case : III Let us take n = 8. \therefore $h = Range/n = \frac{1}{2} = 0.125$ We form a table

<i>x</i> :	0	0.125	0.25	0.375	8 0.50	0.625	0.750	0.875	1.0
$y = \frac{1}{1+x^2}:$	1	0.8889	0.8	0.7273	0.6667	0.6154	0.5714	0.5333	0.5
Using Trapezoi $I_3 = \int_0^1$	$\frac{dx}{1+x} =$	$=\frac{h}{2}[(y_0+$	y ₈) + 2	(y ₁ + y ₂ +	$y_3 + y_4 +$	y5+ y6+	Sor Sor		
$I_3 = \int_0^1$	2	+0.5)+2	2 (0.6665	+0.0+1	1.7273+0.	000/ + 0.0	154 + 0.57	714 + 0.53	33)]
By using Romb $I = I_2$	erg's For $+\left(\frac{I_2-I_2}{3}\right)$	mula fir I_1 $\frac{I_1}{2} = 0.69$	8 6	ve have 6970 – 0. 3	7083)				
I = 0.0	6932						(1)		
By using Romb	erg's For	mula fir I_2	& I ₃ v	ve have					
$I = I_3$	$+\left(\frac{I_3-I_3}{3}\right)$	$\left(\frac{l_2}{l_2}\right) = 0.69$	$941 + \left(\frac{0}{1}\right)$.6941 – 0. 3	<u>6970</u>)				

$$l = 0.6931$$

....(2)

DOUBLE INTEGRALS BY USING TRAPEZOIDAL RULE & SIMPSONS RULE

Evaluate $\int_{1}^{1.4} \int_{2}^{2.4} \frac{1}{xy} dx dy$ by using Trapezoidal rule & Simpson's rule. 1.

Solution : Divide the range of x & y into 4 equal parts.

Let
$$f(x,y) = \frac{1}{xy}$$
 and $h = \frac{Range}{n} = \frac{b-a}{n} = \frac{2.4-2}{4} = 0.1$ and $k = \frac{1.4-1}{4} = 0.1$

$$h = 0.1$$
 & $k = 0.1$

			Difference h	a = 0.1		
0.1	<i>y</i> / <i>x</i>	2 (0)	2.1 (1)	2.2 (2)	2.3 (3)	2.4 (4)
11	1.0	0.5	0.4762	0.4545	0.4348	0.4167
e k	1.1	0.4545	0.4329	0.4132	0,3953	0.3788
Difference	1.2	0.4167	0.3968	0.3788	0.3623	0.3472
iffe	1.3	0.3849	0.3663	0.3497	0.3344	0.3205
Q	1.4	0.3571	0.3401	0.3247	0.3106	0.2976

(i). Trapezoidal Rule:

(i). Trapezoidal Rule:
Given
$$l = \int_{1}^{1.4} \int_{2}^{2.4} \frac{1}{xy} dx dy$$

Trapezoidal Rule : $I = \frac{h}{2} [(y_0 + y_n) + 2(y_1 + y_2 + y_3 + \dots + y_{n-1})]$
First we apply Trapezoidal rate for Each Row (h = 0.1), we have
Now, $g_0(y) = g_0(1.0) = \frac{0.1}{2} [(0.5 + 0.4167) + 2(0.4762 + 0.4545 + 0.4348)]$ [Ist Row]
 $g_0(y) = g_0(1.0) = \frac{0.1}{2} [3.6477]$
 $g_0(y) = g_0(1.0) = 0.182685$
 $g_1(y) = g_1(1.1) = \frac{1}{0.1} [(0.4545 + 0.3788) + 2(0.4329 + 0.4132 + 0.3953)]$ [2nd Row]
 $g_1(y) = g_1(1.1) = 0.165805$
 $g_2(y) = g_2(1.2) = \frac{0.1}{2} [(0.4167 + 0.3472) + 2(0.3968 + 0.3788 + 0.3623)]$ [3rd Row]
 $g_2(y) = g_3(1.2) = 0.151985$
 $g_3(y) = g_3(1.2) = \frac{0.1}{2} [(0.3849 + 0.3205) + 2(0.3663 + 0.3497 + 0.3344)]$ [4th Row]
 $g_3(y) = g_3(1.2) = 0.14031$

$$\begin{array}{l} g_4(y) = g_4(1.2) = \frac{0.1}{2} [(0.3571 + 0.2976) + 2(0.3401 + 0.3247 + 0.3106)] \quad [5^{th} \ Row] \\ g_4(y) = g_4(1.2) = 0.130275 \\ \mbox{Applying Trapezoidal rule again for $g_0, $g_1, $g_2, $g_3 \& g_4, with $k = 0.1$, we have \\ I = \int_1^{1.4} \int_2^{2.4} \frac{1}{xy} dx \, dy = \frac{h}{2} \left[(g_0 + g_4) + 2(g_1 + g_2 + g_3) \right] \\ I = \frac{0.1}{2} \left[(0.182685 + 0.130275) + 2(0.165805 + 0.151985 + 0.14031) \right] \\ I = 0.0614 \\ (ii). \ Simpson's Rule: I = \frac{h}{3} \left[(y_0 + y_n) + 4(y_1 + y_3 + y_5 + \cdots) + 2(y_2 + y_4 + \cdots) \right] \\ First we apply Simpson's rule for Each Row (h = 0.1), we have \\ Now, \qquad g_0(y) = g_0(1.0) = \frac{0.1}{3} \left[(0.5 + 0.4167) + 4(0.4762 + 0.4348) + 2(0.4545) \right] \quad [I^{st} \ Row] \\ = \frac{0.1}{3} \left[5.4697 \right] \\ g_0(y) = g_0(1.0) = 0.18232 \\ g_1(y) = g_1(1.1) = \frac{0.1}{3} \left[(0.4545 + 0.3788) + 4(0.329 + 0.3953) + 2(0.4132) \right] \quad [2^{1ud} \ Row] \\ g_2(y) = g_2(1.2) = \frac{0.1}{3} \left[(0.4167 + 0.3472) + 4(0.3964 + 0.3623) + 2(0.3788) \right] \quad [3^{rd} \ Row] \\ g_2(y) = g_2(1.2) = 0.15193 \\ g_3(y) = g_3(1.2) = \frac{0.1}{3} \left[(0.3571 + 0.2976) + 4(0.3401 + 0.3106) + 2(0.3247) \right] \quad [5^{th} \ Row] \\ g_4(y) = g_4(1.2) = \frac{0.1}{3} \left[(0.18232 + 0.13023) + 4(0.16575 + 0.140253) + 2(0.15193) \right] \\ I = 0.0614 \\ \\ Actual Integration : \\ \int_1^{1.4} \int_2^{2.4} \frac{1}{xy} \, dx \, dy = \frac{h}{2} \left[(g_0 + g_4) + 4(g_1 + g_3) + 2(g_2) \right] \\ = \frac{0.1}{3} \left[(0.18232 + 0.13023) + 4(0.16575 + 0.140253) + 2(0.15193) \right] \\ I = 0.0614 \\ \\ \\ \\$$

38

 $= [\log(1.4) - \log(1)] [\log(2.4) - \log(2)]$

$$= [\log(1.4) - 0] \ [\log(1.2)]$$

$$I = 0.0613$$

2. Evaluate $\int_0^2 \int_0^2 f(x,y) \, dx \, dy$ by using Trapezoidal rule.

y/x	0 (0)	0.5 (1)	1.0 (2)	1.5 (3)	2.0 (4)
0	2	3	4	5	5
1	3	4	6	9	11
2	4	6	8	11	14

Solution: (i). Trapezoidal Rule: Here h = 1 and k = 0.5

Given
$$I = \int_0^2 \int_0^2 f(x, y) \, dx \, dy$$

First we apply Trapezoidal rule for Each Row (h = 0.5), we have

Trapezoidal Rule :
$$I = \frac{h}{2} [(y_0 + y_n) + 2(y_1 + y_2 + y_3 + \dots + y_{n-1})]$$

Now, $g_0(y) = g_0(1.0) = \frac{1}{2} [(2+5) + 2(3+4+5)] = \frac{1}{2} [31]$ $M[I^{st} Row]$
 $g_0(y) = 15.5$
 $g_1(y) = g_1(2) = \frac{1}{2} [(3+11) + 2(4+6+9)]$ $[2^{nd} Row]$
 $g_1(y) = 26$
 $g_2(y) = g_2(3) = \frac{1}{2} [(4+14) + 2(6+8+14)]$ $[3^{rd} Row]$
 $g_2(y) = 34$
Applying Trapezoidal rule again for g_0, g_1, g_2 , with $k = 1$, we have
 $I = \int_0^2 \int_0^2 f(x,y) dx dy = \frac{h}{2} [(g_0 + g_2) + 2(g_1)]$
 $I = \frac{1}{2} [(15.5 + 34) + 2(26)]$
 $I = 20.75$

3. Using Simpson's 1/3 rule, evaluate $\int_0^1 \int_0^1 \frac{1}{1+x+y} dx dy$ taking h = k = 0.5.

Solution : Divide the range of x & y into 4 equal parts.

$$h = k = 0.5$$
 Let $f(x, y) = \frac{1}{1+x+y}$.

y_{x}	0 (0)	0.5 (1)	1.0 (2)	
0	1	0.6667	0.5	
0.5	0.6667	0.5	0.4	

1.0	0.5	0.4	0.3333		
Simpson's Rule:					
Given $I = \int_0^1 \int$	$\int_0^1 \frac{1}{1+x+y} dx$	dy			
First we apply Sim	pson's rule for	·Each Row	(h=0.5), we	have	
Simson's Rule : 1	$=\frac{h}{3}\left[\left(y_0+y_n\right)\right]$	$+4(y_1+y_3)$	$+ y_5 + \cdots) + 2$	$2(y_2 + y_4)$	+…)]
Now, $g_0(y)$	$= g_0(0) = \frac{0.5}{3}[$	(1+0.5)+	4(0.6667) + 2((0)]	[I st Row]
$g_0(y) = 0$	0.694466				
$g_1(y) = g_1(0.5$	$=\frac{0.5}{3}[(0.6667)]$	7 + 0.4) + 4(0.5) + 2(0)]	[2 nd	Row]
$g_1(y) = 0$					
$g_2(y) = g_2(1.0)$	$=\frac{0.5}{3}[(0.5+0)]$.3333) + 4(0.4) + 2(0)]	[3 rd]	Row]N
$g_2(y)=0.$	40555			C	n
Applying Simpso	n's rule again for	g ₀ , g ₁ , g ₂ ,	with $k = 0.5$	we have	h
$g_2(y) = g_2(1.0)$ $g_2(y) = 0.$ Applying Simpso $I = \int_0^1 \int_0^1 \frac{1}{1+x}$	$\frac{1}{x+y} dx dy = \frac{h}{2}$	$[(g_0 + g_4) \cdot$	$+4(g_1+g_3)+$	- 2(g ₂)]	
	$l = \frac{0.5}{2}$	[(0.694466	+ 0.40555)+	4(0.5111	(12) + 2(0)]
	I = 0.52	2408	+ 0.40555)¥		
4. Evaluate \int_0^1	$\int_1^2 \frac{2 x y}{(1+x^2)(1+y^2)} dx$	dx dy by us	ing Trapezoidal	rule with	h = k = 0.25.
Solution :	(SIL.			
	2 xy		r.		

Let $f(x, y) = \frac{2xy}{(1+x^2)(1+y^2)}$	and	$h \stackrel{\checkmark}{=} k = 0.25$	
--	-----	---------------------------------------	--

			Difference h	= 0.25		
	y / x	1 (0)	1.25 (1)	1.50 (2)	1.75 (3)	2.0 (4)
ence	0	0	0	0	0	0
	0.25	0.2353	0.2295	0.2172	0.2027	0.1882
ffen k = 0	0.50	0.4	0.3902	0.3692	0.3446	0.32
Dif k	0.75	0.48	0.5854	0.4431	0.4135	0.384
	1	0.5	0.4878	0.4615	0.4308	0.4

Trapezoidal Rule:

Given
$$I = \int_0^1 \int_1^2 \frac{2xy}{(1+x^2)(1+y^2)} \, dx \, dy$$

First we apply Trapezoidal rule for Each Row (h = 0.25), we have

$$\begin{aligned} Trapezoidal \, Rule : \quad I &= \frac{h}{2} \left[(y_0 + y_u) + 2(y_1 + y_2 + y_3 + \cdots + y_{u-1}) \right] \\ Now, \qquad g_0(y) &= g_0(0) = \frac{0.25}{2} \left[(0 + 0) + 2(0) \right] \quad [I^{st} \quad Row] \\ g_0(y) &= 0 \\ g_1(y) &= g_1(0.25) = \frac{0.25}{2} \left[(0.2353 + 0.1882) + 2(0.2295 + 0.2172 + 0.2027) \right] \quad [2^{ud} \quad Row] \\ g_1(y) &= 0.2152875 \\ g_2(y) &= g_2(0.50) = \frac{0.25}{2} \left[(0.4 + 0.32) + 2(0.3902 + 0.3692 + 0.3446) \right] \quad [3^{vd} \quad Row] \\ g_2(y) &= 0.3660 \\ g_3(y) &= g_3(0.75) = \frac{0.25}{2} \left[(0.48 + 0.384) + 2(0.468 + 0.4431 + 0.4135) \right] \quad [4^{th} \quad Row] \\ g_3(y) &= 0.439 \\ g_4(y) &= g_4(1) = \frac{0.25}{2} \left[(0.5 + 0.4) + 2(0.4878 + 0.4615 + 0.4308) \right] \quad [5^{ch} \quad Row] \\ g_4(y) &= 0.457525 \\ \text{Applying Trapezoidal rule again for } g_0, g_1, g_2, g_3 \& g_4, \text{ with } k = 0.25, \text{ we have} \\ I &= \int_0^1 \int_1^2 \frac{2 xy}{(1 + x^2)(1 + y^2)} \, dx \, dy = \frac{h}{2} \left[(g_0 + g_4) + 2(g_1 + g_2 + g_3) \right] \\ I &= \frac{0.25}{2} \left[(0 + 0.457525) + 2(0.2152875 + 0.3660 + 0.4685) \right] \\ I &= 0.3122 \end{aligned}$$

5. Evaluate $\int_{1}^{2} \int_{1}^{2} \frac{1}{x^{2}+y^{2}} dx dy$ by taking h = 0.2 along x - direction and k = 0.25 along y - direction. Solution: Let $f(x,y) = \frac{1}{x^{2}+y^{2}}$ and h = 0.2 and k = 0.25

a	irection.

		*				
y / x	1 (0)	1.2 (1)	1.4 (2)	1.6 (3)	1.8 (4)	2.0 (5)
1	0.5	0.4098	0.3378	0.2809	0.2359	0.2
1.25	0.3902	0.3331	0.2839	0.2426	0.2082	0.1798
1.50	0.3077	0.2710	0.2375	0.2079	0.1821	0.16
1.75	0.2462	0.2221	0.1991	0.1779	0.1587	0.1416
2	0.2	0.1838	0.1679	0.1524	0.1381	0.125

(i). Trapezoidal Rule: $I = \int_1^2 \int_1^2 \frac{1}{x^2 + y^2} dx dy$

First we apply Trapezoidal Rule for Each Row (h = 0.25), we have

Trapezoidal Rule :
$$I = \frac{n}{2} [(y_0 + y_n) + (y_1 + y_2 + y_3 + \cdots)]$$

Now,
$$g_0(y) = g_0(1.0) = \frac{0.25}{2} [(0.5 + 0.2) + (0.4098 + 0.3378 + 0.2809 + 0.2359)]$$
 [Ist Row]
 $g_0(y) = 0.40918$
 $g_1(y) = g_1(1.25) = \frac{0.25}{2} [(0.3902 + 0.1798) + (0.3331 + 0.2839 + 0.2426 + 0.2082)]$ [2nd Row]
 $g_1(y) = 0.32142$
 $g_2(y) = g_2(1.50) = \frac{0.25}{2} [(0.3077 + 0.16) + (0.2710 + 0.2839 + 0.2079 + 0.1821)]$ [3rd Row]
 $g_2(y) = 0.26854$
 $g_3(y) = g_3(1.75) = \frac{0.25}{2} [(0.2462 + 0.1416) + (0.2221 + 0.1991 + 0.1779 + 0.1587)]$ [4th Row]
 $g_3(y) = 0.2253$
 $g_4(y) = g_4(2.0) = \frac{0.25}{3} [(0.2 + 0.125) + (0.1838 + 0.1679 + 0.1524 + 0.1381)]$ [5th Row]
 $g_4(y) = 0.19015$
Applying Trapezoidal rule again for $g_0, g_1, g_2, g_3 \& g_4$, with $k = 0.25$, we have
 $I = \int_1^{1.4} \int_2^{2.4} \frac{1}{xy} dx dy = \frac{k}{2} [(g_0 + g_4) + 4(g_1 + g_3) + 2(g_2)]$
 $I = 0.2769$

$$I = 0.2769$$

6. Using Simpson's rule, evaluate $\int_{1}^{2} \int_{1}^{2} \frac{1}{x+y} dx dy$ by dividing the interval (1,2) into two sub intervals.

Solution :

Solution :							
Let $f(x, y) = \frac{1}{x+y}$ and $h = k = \frac{2}{2} = 0.5$							
y / x	1	1.5	2				
1	0.5	0.4	0.3333				
1.5	0.4	0.3333	0.2857				
2	0.3333	0.2857	0.25				

Simpson's Rule:

$$I = \int_{1}^{2} \int_{1}^{2} \frac{1}{x+y} \, dx \, dy$$

First we apply Simson's Rule for Each Row (h = 0.5), we have

Simson's Rule:
$$I = \frac{h}{3} [(y_0 + y_u) + 4(y_1 + y_3 + y_5 + \dots) + 2(y_2 + y_4 + \dots)]$$

Now, $g_0(y) = g_0(1.0) = \frac{0.5}{3} [(0.5 + 0.3333) + 4(0.4) + 2(0)]$ [Ist Row]
 $g_0(y) = 0.40555$

$$g_1(y) = g_1(2) = \frac{0.5}{3} [(0.4 + 0.2857) + 4(0.3333) + 2(0)] \qquad [2^{ud} \ Row]$$
$$g_1(y) = 0.33468$$

$$g_2(y) = g_2(3) = \frac{0.5}{3} [(0.3333 + 0.25) + 4(0.2857) + 2(0)] \qquad [3^{vd} \ Row]$$
$$g_2(y) = 0.28768$$

Applying Simpson's rule again for g_0, g_1, g_2 , with k = 0.25, we have

$$I = \int_{1}^{2} \int_{1}^{2} \frac{1}{x+y} \, dx \, dy = \frac{k}{3} \left[(g_0 + g_2) + 4(g_1) + 2(0) \right]$$
$$I = \frac{0.5}{3} \left[(0.40555 + 0.28768) + 4(0.33468) + 2(0) \right]$$
$$I = 0.33865$$

7. Evaluate $\int_0^{\pi/2} \int_0^{\pi/2} \sqrt{\sin(x+y)} \, dx \, dy$ by numerical double integration using Simpson's rule with $h = k = \frac{\pi}{4}$

Solution: Let
$$f(x, y) = \sqrt{\sin(x + y)}$$
 and $h = k = \frac{\pi}{4}$
 y / x 0 $\pi / 4$ $\pi / 2$
0 0 0 0.8409 1
 $\pi / 4$ 0.8409 1 0.8409
 $\pi / 2$ 1 0.8409
 $\pi / 2$ 1 0.8409
Simpson's Rule:
 $I = \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \sqrt{\sin(x + y)} \, dx \, dy$
First we apply Simson's Rule for back Row $(h = \pi / 4)$, we have
Simson's Rule : $I = \frac{h}{3} [(y_0 + y_1) + 4(y_1 + y_3 + y_5 + \cdots) + 2(y_2 + y_4 + \cdots)]$
Now, $g_0(y) = g_0(0) = \frac{(\frac{\pi}{4})}{3} [(0 + 1) + 4(0.8409) + 2(0)]$ [Ist Row]
 $g_0(y) = 1.142388$
 $g_1(y) = g_1(\frac{\pi}{4}) = \frac{(\frac{\pi}{4})}{3} [(0.8409 + 0.8409) + 4(1) + 2(0)]$ [2nd Row]
 $g_1(y) = 1.48749$
 $g_2(y) = g_2(\frac{\pi}{2}) = \frac{(\frac{\pi}{4})}{3} [(1 + 0) + 4(0.8409) + 2(0)]$ [3rd Row]
 $g_2(y) = 1.142388$

Applying Simpson's rule again for g_0, g_1, g_2 , with $k = \pi/4$, we have

$$I = \int_{1}^{\frac{\pi}{2}} \int_{1}^{\frac{\pi}{2}} \sqrt{\sin(x+y)} \, dx \, dy = \frac{h}{3} \left[(g_0 + g_2) + 4(g_1) + 2(0) \right]$$
$$I = \frac{\left(\frac{\pi}{4}\right)}{3} \left[(1.142388 + 1.142388) + 4(1.4874) + 2(0) \right]$$
$$I = 2.15575$$

St.