1. Write down the condition for convergence in fixed point iteration method.
2. Write down the condition for convergence in Gauss-Jacobi method.
3. Write down the iterative formula for Newton-Raphson method.
4. Define probability in axiomatic approach.
5. State total law of probability.
6. Prove that probability of an impossible event is zero.
7. Find the probability of drawing a queen and a king from a pack of cards in two consecutive draws, the cards drawn are not being replaced.
8. What is the chance of getting two sixes in two rollings of a single die?
9. Find the interval in which a positive root lies for the following equation

$$
x^{3}=2 x+5
$$

10. Write down the iterative formula for Gauss-Jacobi method.
11. Write down the condition for convergence in Regula Falsi method.
12. Write down the condition for convergence in Gauss-Seidel method.
13. Write down the iterative formula for False position method.
14. Define probability.
15. State Baye's theorem.
16. Prove that $P(\bar{A})=1-P(A)$.
17. Define mutually exclusive events.
18. A bag contains 3 red and 4 white balls. Two balls are drawn without replacement. What is the probability that both the balls are red?
19. What are steps to be performed to find the solution to a simultaneous equation with three unknowns using Gauss-Jordon method?
20. Write down the iterative formula for Gauss-Seidel method.
21. The members of a consulting firm rent cars from rental agencies A, B and C as $60 \%, 30 \%$ and 10% respectively. If $9 \%, 20 \%$ and 6% of cars from A, B and C agencies need turn and if a rental car delivered to the firm does not need turn up, what is the probability that it came from B agency.
22. If A and B are independent events, prove that (i) \bar{B} and A are independent
ii) \bar{A} nd \bar{B} are independent.
23. Find a positive root of the following equations by Newton's method correct to 5 decimal places $x^{3}=6 x-4$
24. Solve the following system by Gauss-Elimination method:
$10 x+y+z=12,24 x+10 y+z=13, x+y+5 z=7$
25. Solve the following system by triangularization method:

$$
x+5 y+z=14,2 x+y+3 z=13,3 x+y+4 z=17
$$

26. The first bag contains 3 white balls, 2 red balls and 4 black balls. Second bag contains 2 white, 3 red and 5 black balls and third bag contains 3 white, 4 red and 2 black balls. One ball is chosen at random and from it 3 balls are drawn. Out of three balls two balls are white and one red. What are the probabilities that they taken from first bag, second bag, third bag?
27. Find a positive root of the following equations by Regula Falsi method $3 x-\cos x=1$
28. Solve the following system by Gauss-Seidel method: $10 x-5 y-2 z=3,4 x-10 y+3 z=-3, x+6 y+10 z=-3$
29. Solve the following system by triangularization method:
$x+y+z=1,4 x+3 y-z=6,3 x+5 y+3 z=4$
