Fourth Semester
Electrical and Electronics Engineering
MA2264 - NUMERICAL METHODS

(Regulation 2008)
(Common to All)
Time : Three hours

Answer ALL Questions

PART A $-(10 \times 2=20$ Marks $)$

1) Solve $\boldsymbol{e}^{x}-\mathbf{3 x}=\mathbf{0}$ by the method of iteration.
2) Using Newton's method, find the root between 0 and 1 of $x^{3}=6 x-4$.
3) State Lagrange's interpolation formula for unequal intervals.
4) Define cubic spline function.
5) State Simpson's one-third rule.
6) Write down two point Gaussian quadrature formula.
7) State Euler's method to solve $\frac{d y}{d x}=f(x, y)$ with $y\left(x_{0}\right)=y_{0}$.
8) State Adam's predictor-corrector formulae.
9) Classify the PDE $\boldsymbol{y}\left(\boldsymbol{x}_{0}\right)=y_{0}$.
10) State Standard Five Point formula with relevant diagram.

PART B $-(5 \times 16=80$ marks $)$
11) a) i) Find an iterative formula to find the reciprocal of a given number N and hence find the value

$$
\begin{equation*}
\text { of } \frac{1}{19} \tag{6}
\end{equation*}
$$

ii) Apply Gauss-Jordan method to find the solution of the following system:

$$
\begin{align*}
& 10 x+y+z=12 \\
& 2 x+10 y+z=13 \tag{10}\\
& x+y+5 z=7
\end{align*}
$$

(Or)
b) i) Solve, by Gauss-Seidel method, the following system:

$$
\begin{align*}
& 28 x+4 y-z=32 \\
& x+3 y+10 z=24 \tag{10}\\
& 2 x+17 y+4 z=35
\end{align*}
$$

ii) Find the largest eigenvalue of $\left(\begin{array}{lll}1 & 6 & 1 \\ 1 & 2 & 0 \\ \mathbf{0} & \mathbf{0} & 3\end{array}\right)$, by using Power method.
12) a) The population of a town is as follows:
x Year: $\quad 1941 \quad 1951 \quad 1961 \quad 1971 \quad 1981 \quad 1991$
y Population in
thousands: $\begin{array}{lllllll}20 & 24 & 29 & 36 & 46 & 51\end{array}$

Estimate the population increase during the period 1946 to 1976.
(Or)
b) Determine $\boldsymbol{f}(\boldsymbol{x})$ as a polynomial in \boldsymbol{x} for the following data, using Newton's divided difference formulae. Also find $\boldsymbol{f}(2)$.

$$
\begin{array}{llllll}
\mathrm{x}: & -4 & -1 & 0 & 2 & 5 \\
\mathrm{f}(\mathrm{x}) & 1245 & 33 & 5 & 9 & 1335
\end{array}
$$

13) a) Find the first two derivatives of $\boldsymbol{x}^{\mathbf{1 / 3}}$ at $\boldsymbol{x}=\mathbf{5 0}$ and $\boldsymbol{x}=\mathbf{5 6}$, for the given table:

$\boldsymbol{x}:$	50	51	52	53	54	55	56
$y=x^{1 / 3}$	3.6840	3.7084	3.7325	3.7563	3.7798	3.8030	3.8259

(Or)
b) Evaluate $I=\int_{0}^{6} \frac{\mathbf{1}}{1+\boldsymbol{x}} d \boldsymbol{x}$ by using (i) direct integration (ii) Trapezoidal rule (iii)

Simpson's one-third rule (iv) Simpson's three-eighth rule.
14) a) Given $\boldsymbol{y}^{\prime \prime}+\boldsymbol{x} y^{\prime}+\boldsymbol{y}=\mathbf{0}, \boldsymbol{y}(\mathbf{0})=\mathbf{1}, \boldsymbol{y}^{\prime}(\mathbf{0})=\mathbf{0}$. Find the value of $\boldsymbol{y}(\mathbf{0 . 1})$ by using Runge-Kutta method of fourth order.
(Or)
b) Given that $\frac{d y}{d x}=\frac{1}{2}\left(1+x^{2}\right) y^{2} ; y(0)=1 ; y(0.1)=1.06 ; y(0.2)=1.12$ and $y(0.3)=1.21$, evaluate $\boldsymbol{y}(\mathbf{0 . 4})$ and $\boldsymbol{y}(\mathbf{0 . 5})$ by Milne's predictor corrector method.
15) a) Using the finite difference method, compute $\boldsymbol{y}(\mathbf{0 . 5})$, given $y^{\prime \prime}-\mathbf{6 4} \boldsymbol{y}+\mathbf{1 0}=\mathbf{0}$, $\boldsymbol{x} \in(\mathbf{0}, \mathbf{1}), \boldsymbol{y}(\mathbf{0})=\boldsymbol{y}(\mathbf{1})=\mathbf{0}$, subdividing the interval into (i) 4 equal parts (ii) 2 equal parts.
(Or)
b) Solve $\boldsymbol{\nabla}^{2} \boldsymbol{u}=\mathbf{8} \boldsymbol{x}^{2} \boldsymbol{y}^{2}$ for square mesh given $\boldsymbol{u}=\mathbf{0}$ on the four boundaries dividing the square into 16 sub-squares of length 1 unit.

