B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2011

Fourth Semester

Electrical and Electronics Engineering

MA2264 - NUMERICAL METHODS

(Regulation 2008)

(Common to All)

Time : Three hours

Maximum : 100 marks

(6)

Answer ALL Questions

PART A - (10 x 2 = 20 Marks)

- 1) Solve $e^x 3x = 0$ by the method of iteration.
- 2) Using Newton's method, find the root between 0 and 1 of $x^3 = 6x 4$
- 3) State Lagrange's interpolation formula for unequal intervals.
- 4) Define cubic spline function.
- 5) State Simpson's one-third rule.
- 6) Write down two point Gaussian quadrature formula.

7) State Euler's method to solve
$$\frac{dy}{dx} = f(x, y)$$
 with $y(x_0) = y_0$.

- 8) State Adam's predictor-corrector formulae.
- 9) Classify the PDE $y(x_0) = y_0$.
- 10) State Standard Five Point formula with relevant diagram.

PART B - (5 x 16 = 80 marks)

11) a) i) Find an iterative formula to find the reciprocal of a given number N and hence find the value

of $\frac{1}{19}$.

ii) Apply Gauss-Jordan method to find the solution of the following system:

$$10x + y + z = 12$$

$$2x + 10y + z = 13$$

$$x + y + 5z = 7$$
(10)

b) i) Solve, by Gauss-Seidel method, the following system:

$$28x + 4y - z = 32$$

$$x + 3y + 10z = 24$$

$$2x + 17y + 4z = 35$$
(10)

ii) Find the largest eigenvalue of $\begin{pmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$, by using Power method.

12) a) The population of a town is as follows:

x Year:	1941	1951	1961	1971	1981	1991
y Population in						
thousands:	20	24	29	36	46	51

Estimate the population increase during the period 1946 to 1976.

(Or)

b) Determine f(x) as a polynomial in x for the following data, using Newton's

divided difference formulae. Also find f(2).

x:	-4	-1	0	2	5
f(x)	1245	33	5	9	1335

13) a) Find the first two derivatives of $x^{1/3}$ at x = 50 and x = 56, for the given table:

4	<i>x</i> :	50	51	52	53	54	55	56
	$y = x^{1/3}$	3.6840	3.7084	3.7325	3.7563	3.7798	3.8030	3.8259

b) Evaluate $I = \int_{0}^{6} \frac{1}{1+x} dx$ by using (i) direct integration (ii) Trapezoidal rule (iii)

Simpson's one-third rule (iv) Simpson's three-eighth rule.

14) a) Given y'' + xy' + y = 0, y(0) = 1, y'(0) = 0. Find the value of y(0.1) by using Runge-Kutta method of fourth order.

(Or)

- b) Given that $\frac{dy}{dx} = \frac{1}{2} (1 + x^2) y^2$; y(0) = 1; y(0.1) = 1.06; y(0.2) = 1.12 and y(0.3) = 1.21, evaluate y(0.4) and y(0.5) by Milne's predictor corrector method.
- 15) a) Using the finite difference method, compute y(0.5), given y'' 64y + 10 = 0, $x \in (0,1)$, y(0) = y(1) = 0, subdividing the interval into (i) 4 equal parts (ii) 2 equal parts.

(Or)

b) Solve $\nabla^2 u = 8x^2y^2$ for square mesh given u = 0 on the four boundaries dividing the square into 16 sub-squares of length 1 unit.