L 1118

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2006.

Fourth Semester

Civil Engineering

MA 1251 ~ NUMERICAL METHODS
(Common to Aeronautical Engg., Electrical and Electronies Engg., Mechatronics Engg. and Metallurgical Engg. and Common to B.E. (Part-rime) Third Semester)
(Regulation 2004)
Time: Three hours
Maximum : 100 marks

> Answer ALL questions.
> PART A $-(10 \times 2=20$ marks $)$

1. If $f(x)=0$ has root between $x=a$ and $x=\boldsymbol{b}$, then write the first approximate root by the methed dfalse position.
2. Solve the system of equations $x-2 y=0,2 x+y=5$ by Gaussian elimination method.
3. Obtain the divided difference table for the following data
```
x:2 3 5
y : 0 14 102
```

4. Find a polynomial for the following data by Newton's backward difference formua

$$
\begin{array}{ccccc}
x: & 0 & 1 & 2 & 3 \\
f(x): & -3 & 2 & 9 & 18
\end{array}
$$

5. Write down the expressions for $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $x=x_{0}$ by Newton's forward difference formula.
6. Evaluate $\int_{1}^{4} f$ (土) $d x$ from the table by Simpson's $3 / 8$ rule

$x:$	1	2	3	4
$f(x):$	1	8	27	64

7. State Adarns-Bashforth predictor and corrector formula.
8. Find $y(1.1)$, given $\frac{d y}{d x}=x+y, y(1)=2$ by Euler's method.
9. Write down the finite difference scheme for the differential equation $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}=2$.

10, State the implicit finite difference scheme for dimensional heat equation.

$$
\text { PART B }-(5 \times 16=80 \text { rarks })
$$

11. (i) Using Lagrange's interpolationformyla fit a polynomial $\boldsymbol{t o}$ the following data :

$x:$	-1	0	2	3
$y:$	-8	3	1	12

and hence find y at $\mathrm{x}=1.5$
(ii) Fit the cubic spline ior the data:

```
x: 1 2 3
y: -6 -1 16
```

Hence evarate y (1.5).
12. (a) (i) Find an iterative formula to find \sqrt{N} where N is a positive integer using Newton's method and hence find $\sqrt{11}$.
(ii) Solve the following system of equations by Gauss-Seidel method correct to three decimal places.

$$
\begin{align*}
x+y+54 z & =110 \\
27 x+6 y-z & =85 \tag{8}\\
6 x+15 y+2 z & =72 .
\end{align*}
$$

(b) (i) Find the inverse of the given matrix by Gauss-Jordon method $A=\left[\begin{array}{lll}1 & \mathrm{I} & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right]$
(ii) Find the numerically largest eigenvalue of $\mathbf{A}=\left[\begin{array}{ccc}25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0\end{array}\right]$ by power method and the corresponding eigenvector (correct to three decimal points). Start with initial eigenvector $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$,
13. (a) (i) Compute $\int_{0} \frac{d x}{1+x^{2}}$ by using Trapezoidal rue, taking $h=0.5$ and $\boldsymbol{h}=0.25$. Hence find the value of the above integration by Romberg's method.
(ii) Evaluate $I=\int_{0}^{1} \frac{d t}{1+t}$ by using three point Gaussian quadrature formula.
(b) Evaluate $\int_{1}^{2} \int_{1}^{2} \frac{d x d y}{x+y}$ by using Simpson's $1 / 3$ rule, taking $\Delta x=\Delta y=0.25$.
14. (a) i Using Taydor series method, find y at $x=0.1$, given $\frac{d y}{d x}=x^{2}-y,(0)=1$, correct to 4 decimal places.
(ii) Usin Runge-Kutta method of fourth order, solve $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}$ given y $(0)=1$ at $x=0.2$.

Or
(b) Given $\frac{d y}{d x}=x y+y^{2}, y(0)=1, y(0.1)=1.1169, y(0.2)=1.2773$, find y (0.3) by Runge-Kutta method of order four and y (0.4) using Milne's predictor-corrector method.
15. (a) (i) Solve the equation $y^{\prime \prime}=x+y$ with boundary conditions $y(0)=y(1)=0$, numerically taking $\Delta x=0.25$.
(ii) Solve $u_{x x}+u_{y y}=0$ numerically for the following mesh with boundary conditions as shown below :

Or
(b) (i) Solve $\nabla^{2} u=-10\left(x^{2}+y^{2}+10\right)$ over the square mesh with sides $x=0, y=0, x=3, y=3$ with $a=9$ or the boundary and mesh length of 1 unit.
(ii) Solve $\frac{}{\partial x^{2}}-2 \frac{\partial u}{\partial t}$ given

$$
u(0, t)=0, u(4, t)=0 \quad u(x, 0)=x(4-x)
$$

taking $A x=1$ and $A=1$. Find the value of u upto $t=3$ using Bender-Schmidt's explicit finite difference scheme.

